000187942 001__ 187942
000187942 005__ 20240711085701.0
000187942 0247_ $$2doi$$a10.1007/s11666-015-0250-2
000187942 0247_ $$2ISSN$$a1059-9630
000187942 0247_ $$2ISSN$$a1544-1016
000187942 0247_ $$2WOS$$aWOS:000363038600007
000187942 037__ $$aFZJ-2015-01449
000187942 041__ $$aEnglish
000187942 082__ $$a670
000187942 1001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b0$$eCorresponding Author
000187942 245__ $$aEffects of Feedstock Decomposition and Evaporation on the Composition of Suspension Plasma-Sprayed Coatings
000187942 260__ $$aBoston, Mass.$$bSpringer$$c2015
000187942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1445253804_32544
000187942 3367_ $$2DataCite$$aOutput Types/Journal article
000187942 3367_ $$00$$2EndNote$$aJournal Article
000187942 3367_ $$2BibTeX$$aARTICLE
000187942 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187942 3367_ $$2DRIVER$$aarticle
000187942 520__ $$aEmerging new applications and growing demands of plasma-sprayed coatings have initiated the development of new plasma spray processes. One of them is suspension plasma spraying (SPS). The use of liquid feedstock such as suspensions yields higher flexibility compared to the conventional atmospheric plasma spray processes (APS) as even submicron- to nano-sized particles can be processed. This allows, e.g., achieving porous segmented or columnar-structured TBCs or thin and dense coatings for gas separation membranes. To exploit the potentials of such novel plasma spray processes, the plasma-feedstock interaction must be understood better.In this study, decomposition and evaporation of feedstock material during spraying were investigated, since particular difficulties can occur with respect to stoichiometry and phase composition of the deposits. Plasma conditions of SPS were analyzed by optical emission spectroscopy (OES). Experimental results are given, namely for gadolinium zirconate (GZO) and for lanthanum strontium cobalt ferrite (LSCF) deposition by SPS. Moreover, the applied OES approach is validated by comparison with the simpler actinometry method.
000187942 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000187942 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000187942 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187942 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000187942 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000187942 7001_ $$0P:(DE-Juel1)136663$$aSchlegel, Nadin$$b1
000187942 7001_ $$0P:(DE-HGF)0$$aGuignard, Alexandre$$b2
000187942 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b3
000187942 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4
000187942 773__ $$0PERI:(DE-600)2047715-6$$a10.1007/s11666-015-0250-2$$n7$$p1187-1194$$tJournal of thermal spray technology$$v24$$x1059-9630$$y2015
000187942 8564_ $$uhttps://juser.fz-juelich.de/record/187942/files/art%253A10.1007%252Fs11666-015-0250-2.pdf$$yRestricted
000187942 8564_ $$uhttps://juser.fz-juelich.de/record/187942/files/art%253A10.1007%252Fs11666-015-0250-2.gif?subformat=icon$$xicon$$yRestricted
000187942 8564_ $$uhttps://juser.fz-juelich.de/record/187942/files/art%253A10.1007%252Fs11666-015-0250-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000187942 8564_ $$uhttps://juser.fz-juelich.de/record/187942/files/art%253A10.1007%252Fs11666-015-0250-2.jpg?subformat=icon-180$$xicon-180$$yRestricted
000187942 8564_ $$uhttps://juser.fz-juelich.de/record/187942/files/art%253A10.1007%252Fs11666-015-0250-2.jpg?subformat=icon-640$$xicon-640$$yRestricted
000187942 8564_ $$uhttps://juser.fz-juelich.de/record/187942/files/art%253A10.1007%252Fs11666-015-0250-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000187942 909CO $$ooai:juser.fz-juelich.de:187942$$pVDB
000187942 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000187942 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187942 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187942 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000187942 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187942 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187942 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187942 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187942 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000187942 9141_ $$y2015
000187942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000187942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136663$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000187942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000187942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000187942 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000187942 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000187942 920__ $$lyes
000187942 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000187942 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000187942 980__ $$ajournal
000187942 980__ $$aVDB
000187942 980__ $$aI:(DE-Juel1)IEK-1-20101013
000187942 980__ $$aI:(DE-82)080011_20140620
000187942 980__ $$aUNRESTRICTED
000187942 981__ $$aI:(DE-Juel1)IMD-2-20101013