000188001 001__ 188001
000188001 005__ 20240711101536.0
000188001 0247_ $$2doi$$a10.1016/j.ijggc.2015.03.010
000188001 0247_ $$2ISSN$$a1750-5836
000188001 0247_ $$2ISSN$$a1878-0148
000188001 0247_ $$2WOS$$aWOS:000358627100019
000188001 037__ $$aFZJ-2015-01490
000188001 041__ $$aEnglish
000188001 082__ $$a333.7
000188001 1001_ $$0P:(DE-Juel1)129950$$aZhao, Li$$b0$$eCorresponding Author
000188001 245__ $$aInvestigating the Influence of the Pressure Distribution in a Membrane Module on the Cascaded Membrane System for Post-Combustion Capture
000188001 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000188001 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1446467578_27140
000188001 3367_ $$2DataCite$$aOutput Types/Journal article
000188001 3367_ $$00$$2EndNote$$aJournal Article
000188001 3367_ $$2BibTeX$$aARTICLE
000188001 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188001 3367_ $$2DRIVER$$aarticle
000188001 520__ $$aPolyactive® membranes show promising properties for CO2 separation from flue gas. An investigation of different module types using Polyactive® membranes was carried out for this paper. A test rig was built to explore, amongst other process parameters, the pressure drop in envelope-type membrane modules. The experimental data and simulation results were compared with quite good consistency. This validation enabled further simulations for different modules in a virtual pilot plant configuration. Applying the data from the pilot plant simulation to a reference power plant, the scaled-up cascaded membrane system was analyzed using different membrane modules. Considering the required membrane area, energy consumption and pressure drop in different modules, a counter-current membrane module configuration exhibited the best performance and had a marginal advantage in comparison with the chemical absorption process.
000188001 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000188001 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x1
000188001 588__ $$aDataset connected to CrossRef
000188001 7001_ $$0P:(DE-HGF)0$$aBrinkmann, Torsten$$b1
000188001 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b2
000188001 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3
000188001 7001_ $$0P:(DE-HGF)0$$aPohlmann, Jan$$b4
000188001 7001_ $$0P:(DE-HGF)0$$aAkos, Tota$$b5
000188001 773__ $$0PERI:(DE-600)2322650-X$$a10.1016/j.ijggc.2015.03.010$$gVol. 39, p. 194 - 204$$p194 - 204$$tInternational journal of greenhouse gas control$$v39$$x1750-5836$$y2015
000188001 8564_ $$uhttps://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.pdf$$yRestricted
000188001 8564_ $$uhttps://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.gif?subformat=icon$$xicon$$yRestricted
000188001 8564_ $$uhttps://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000188001 8564_ $$uhttps://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000188001 8564_ $$uhttps://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000188001 8564_ $$uhttps://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000188001 909CO $$ooai:juser.fz-juelich.de:188001$$pVDB
000188001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129950$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188001 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000188001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000188001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000188001 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000188001 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000188001 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x1
000188001 9141_ $$y2015
000188001 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188001 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000188001 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188001 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188001 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188001 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188001 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188001 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000188001 920__ $$lyes
000188001 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000188001 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000188001 980__ $$ajournal
000188001 980__ $$aVDB
000188001 980__ $$aI:(DE-Juel1)IEK-3-20101013
000188001 980__ $$aI:(DE-Juel1)IEK-1-20101013
000188001 980__ $$aUNRESTRICTED
000188001 981__ $$aI:(DE-Juel1)ICE-2-20101013
000188001 981__ $$aI:(DE-Juel1)IMD-2-20101013
000188001 981__ $$aI:(DE-Juel1)IEK-1-20101013