001     188001
005     20240711101536.0
024 7 _ |a 10.1016/j.ijggc.2015.03.010
|2 doi
024 7 _ |a 1750-5836
|2 ISSN
024 7 _ |a 1878-0148
|2 ISSN
024 7 _ |a WOS:000358627100019
|2 WOS
037 _ _ |a FZJ-2015-01490
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Zhao, Li
|0 P:(DE-Juel1)129950
|b 0
|e Corresponding Author
245 _ _ |a Investigating the Influence of the Pressure Distribution in a Membrane Module on the Cascaded Membrane System for Post-Combustion Capture
260 _ _ |a New York, NY [u.a.]
|c 2015
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1446467578_27140
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Polyactive® membranes show promising properties for CO2 separation from flue gas. An investigation of different module types using Polyactive® membranes was carried out for this paper. A test rig was built to explore, amongst other process parameters, the pressure drop in envelope-type membrane modules. The experimental data and simulation results were compared with quite good consistency. This validation enabled further simulations for different modules in a virtual pilot plant configuration. Applying the data from the pilot plant simulation to a reference power plant, the scaled-up cascaded membrane system was analyzed using different membrane modules. Considering the required membrane area, energy consumption and pressure drop in different modules, a counter-current membrane module configuration exhibited the best performance and had a marginal advantage in comparison with the chemical absorption process.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brinkmann, Torsten
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 2
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 3
700 1 _ |a Pohlmann, Jan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Akos, Tota
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.ijggc.2015.03.010
|g Vol. 39, p. 194 - 204
|0 PERI:(DE-600)2322650-X
|p 194 - 204
|t International journal of greenhouse gas control
|v 39
|y 2015
|x 1750-5836
856 4 _ |u https://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/188001/files/1-s2.0-S1750583615001024-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:188001
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129950
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129928
913 0 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-122
|2 G:(DE-HGF)POF2-100
|v Power Plants
|x 0
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21