000188026 001__ 188026
000188026 005__ 20240610121139.0
000188026 0247_ $$2doi$$a10.1038/ncomms4031
000188026 0247_ $$2Handle$$a2128/8419
000188026 0247_ $$2WOS$$aWOS:000331083800014
000188026 0247_ $$2altmetric$$aaltmetric:2045533
000188026 0247_ $$2pmid$$apmid:24398704
000188026 037__ $$aFZJ-2015-01512
000188026 041__ $$aEnglish
000188026 082__ $$a500
000188026 1001_ $$0P:(DE-Juel1)145420$$aWei, Xiankui$$b0$$eCorresponding Author
000188026 245__ $$aFerroelectric translational antiphase boundaries in nonpolar materials
000188026 260__ $$aLondon$$bNature Publishing Group$$c2014
000188026 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1424851723_18032
000188026 3367_ $$2DataCite$$aOutput Types/Journal article
000188026 3367_ $$00$$2EndNote$$aJournal Article
000188026 3367_ $$2BibTeX$$aARTICLE
000188026 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188026 3367_ $$2DRIVER$$aarticle
000188026 520__ $$aFerroelectric materials are heavily used in electro-mechanics and electronics. Inside the ferroelectric, domain walls separate regions in which the spontaneous polarization is differently oriented. Properties of ferroelectric domain walls can differ from those of the domains themselves, leading to new exploitable phenomena. Even more exciting is that a non-ferroelectric material may have domain boundaries that are ferroelectric. Many materials possess translational antiphase boundaries. Such boundaries could be interesting entities to carry information if they were ferroelectric. Here we show first that antiphase boundaries in antiferroelectrics may possess ferroelectricity. We then identify these boundaries in the classical antiferroelectric lead zirconate and evidence their polarity by electron microscopy using negative spherical-aberration imaging technique. Ab initio modelling confirms the polar bi-stable nature of the walls. Ferroelectric antiphase boundaries could make high-density non-volatile memory; in comparison with the magnetic domain wall memory, they do not require current for operation and are an order of magnitude thinner.
000188026 536__ $$0G:(DE-HGF)POF2-42G41$$a42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)$$cPOF2-42G41$$fPOF II$$x0
000188026 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188026 7001_ $$0P:(DE-HGF)0$$aTagantsev, Alexander K.$$b1
000188026 7001_ $$0P:(DE-HGF)0$$aKvasov, Alexander$$b2
000188026 7001_ $$0P:(DE-HGF)0$$aRoleder, Krystian$$b3
000188026 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b4$$ufzj
000188026 7001_ $$0P:(DE-HGF)0$$aSetter, Nava$$b5
000188026 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms4031$$gVol. 5$$p3031$$tNature Communications$$v5$$x2041-1723$$y2014
000188026 8564_ $$uhttps://juser.fz-juelich.de/record/188026/files/FZJ-2015-01512.pdf$$yOpenAccess
000188026 8564_ $$uhttps://juser.fz-juelich.de/record/188026/files/FZJ-2015-01512.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000188026 8564_ $$uhttps://juser.fz-juelich.de/record/188026/files/FZJ-2015-01512.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000188026 8564_ $$uhttps://juser.fz-juelich.de/record/188026/files/FZJ-2015-01512.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000188026 909CO $$ooai:juser.fz-juelich.de:188026$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000188026 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000188026 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188026 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188026 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188026 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188026 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188026 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188026 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188026 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000188026 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000188026 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000188026 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000188026 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000188026 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000188026 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188026 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10
000188026 9141_ $$y2014
000188026 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188026 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000188026 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000188026 9131_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000188026 920__ $$lyes
000188026 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000188026 9801_ $$aFullTexts
000188026 980__ $$ajournal
000188026 980__ $$aVDB
000188026 980__ $$aUNRESTRICTED
000188026 980__ $$aFullTexts
000188026 980__ $$aI:(DE-Juel1)PGI-5-20110106
000188026 981__ $$aI:(DE-Juel1)ER-C-1-20170209