000188042 001__ 188042
000188042 005__ 20240711085654.0
000188042 0247_ $$2Handle$$a2128/8418
000188042 037__ $$aFZJ-2015-01520
000188042 041__ $$aEnglish
000188042 1001_ $$0P:(DE-Juel1)159367$$aReppert, Thorsten$$b0$$eCorresponding Author$$ufzj
000188042 1112_ $$aBatterieforum Deutschland 2015$$cBerlin$$d2015-01-21 - 2015-01-23$$wGermany
000188042 245__ $$aOxide-ceramic electrolyte layers for all-solid-state lithium batteries
000188042 260__ $$c2015
000188042 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1424773686_18028
000188042 3367_ $$033$$2EndNote$$aConference Paper
000188042 3367_ $$2DataCite$$aOutput Types/Conference Poster
000188042 3367_ $$2DRIVER$$aconferenceObject
000188042 3367_ $$2ORCID$$aCONFERENCE_POSTER
000188042 3367_ $$2BibTeX$$aINPROCEEDINGS
000188042 520__ $$aIn the past decade, electricity generated from renewable energy sources, as well as electro mobility have gained much importance in our society. With this readiness to change the current system, an increase of requirements for electric grid and safety aspects of energy storage systems appear. All-solid-state lithium batteries (ASB) have better safety properties due to the non-flammable solid electrolyte than common lithium ion batteries (LIB), which use flammable organic liquid as electrolyte. Additionally, a higher energy density is possible because of their compatibility with using high voltage cathode materials. Oxide-ceramic lithium ion conductors such as Li7La3Zr2O12 (LLZ) [1] have the advantage of inertness in oxygen atmosphere, which simplifies their handling during the material processing. LLZ’s stability when contacting lithium metal and its wide electrochemical window (usable up to 8V vs. Li/Li+) would provide higher energy densities than LIB. In combination with its good total ion conductivity of about 10-4 S cm-1 at room temperature [2], it is one of the most promising candidates for all-solid-state battery application. LLZ was synthesized and by substitution of Al [2], Ta [3] and Y [4] into the LLZ structure, the structural stability and its total ion conductivity were improved. Ta substituted LLZ indicated a highest total ion conductivity of about 10-3 S cm-1 and almost no dependence on its lithium concentration. After investigation of bulk electrolyte materials, an ASB prototype cell using bulk LLZ as solid electrolyte was fabricated at IEK-1 and proved to run a LED. To bridge lab works and real applications, large size LLZ functional layers need to be fabricated by different established technologies.  Therefore, the investigated LLZ has been processed by tape casting and was used for sintering studies, in order to obtain highly dense solid electrolyte layers and also mixed electrode films for prospective all-solid-state lithium battery application.References:[1] Murugan et al., Angew. Chem. Int. Ed. 46 (2007) 7778.[2] Hubaud et al., J. Mater. Chem. A. 1 (2013) 8813. [3] Buschmann et al., Phys. Chem. Chem. Phys. 13 (2011) 19378.[4] Murugan et. al., Electrochem. Commun. 13 (2011) 1373.
000188042 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000188042 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000188042 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1$$ufzj
000188042 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b2
000188042 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b3$$ufzj
000188042 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000188042 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b5$$ufzj
000188042 773__ $$y2015
000188042 8564_ $$uhttps://juser.fz-juelich.de/record/188042/files/FZJ-2015-01520.pdf$$yOpenAccess
000188042 8564_ $$uhttps://juser.fz-juelich.de/record/188042/files/FZJ-2015-01520.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000188042 8564_ $$uhttps://juser.fz-juelich.de/record/188042/files/FZJ-2015-01520.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000188042 8564_ $$uhttps://juser.fz-juelich.de/record/188042/files/FZJ-2015-01520.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000188042 909CO $$ooai:juser.fz-juelich.de:188042$$pVDB$$popen_access$$pdriver$$popenaire
000188042 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000188042 9141_ $$y2015
000188042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159367$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188042 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)145623$$aWissenschaftlicher Geschäftsbereich II$$b2$$kVS-II
000188042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000188042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000188042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000188042 9130_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000188042 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000188042 920__ $$lyes
000188042 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000188042 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000188042 9801_ $$aFullTexts
000188042 980__ $$aposter
000188042 980__ $$aVDB
000188042 980__ $$aUNRESTRICTED
000188042 980__ $$aFullTexts
000188042 980__ $$aI:(DE-Juel1)IEK-1-20101013
000188042 980__ $$aI:(DE-82)080011_20140620
000188042 981__ $$aI:(DE-Juel1)IMD-2-20101013