000188043 001__ 188043 000188043 005__ 20240711085700.0 000188043 0247_ $$2doi$$a10.1016/j.jpowsour.2015.02.003 000188043 0247_ $$2ISSN$$a0378-7753 000188043 0247_ $$2ISSN$$a1873-2755 000188043 0247_ $$2WOS$$aWOS:000350930600039 000188043 0247_ $$2altmetric$$aaltmetric:3805150 000188043 037__ $$aFZJ-2015-01521 000188043 041__ $$aEnglish 000188043 082__ $$a620 000188043 1001_ $$0P:(DE-Juel1)145805$$aBünting, A.$$b0$$eCorresponding Author$$ufzj 000188043 245__ $$aInfluence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films 000188043 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015 000188043 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1424780133_18032 000188043 3367_ $$2DataCite$$aOutput Types/Journal article 000188043 3367_ $$00$$2EndNote$$aJournal Article 000188043 3367_ $$2BibTeX$$aARTICLE 000188043 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000188043 3367_ $$2DRIVER$$aarticle 000188043 520__ $$aPure LiFePO4 (LFP) thin films with different thicknesses are deposited at room temperature by a radio frequency (RF) magnetron-sputtering process. Ti foils with and without titanium nitride (TiN) coating as well as thermally oxidized Si wafers coated with Ti or TiN are used as substrates. In a subsequent annealing step, LiFePO4 thin films are crystallized at 500 °C. The interaction between Ti and LiFePO4 as well as between TiN and LiFePO4 is characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), secondary ion mass spectrometry (SIMS), cyclic voltammetry (CV) and galvanostatic measurements. A severe diffusion of Ti into LiFePO4 is found and leading to the formation of impurity phases which resulting in disturbing crystallization behaviour and rough surfaces. Moreover, 80 nm LiFePO4 thin films do not show the desired electrochemical characteristics when they are deposited on Ti foils directly. By using a TiN interlayer, the diffusion of Ti into LiFePO4 can be blocked resulting in smooth morphologies and improving crystallisation behaviour. Impurity phases do not develop and all samples exhibit the expected electrochemical characteristics. Therefore, TiN is a promising candidate for the use as a current collector in all-solid-state batteries with LiFePO4 electrodes. 000188043 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000188043 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1 000188043 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000188043 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, S.$$b1$$ufzj 000188043 7001_ $$0P:(DE-Juel1)158085$$aDellen, C.$$b2$$ufzj 000188043 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, M.$$b3 000188043 7001_ $$0P:(DE-Juel1)156244$$aTsai, C.-L.$$b4$$ufzj 000188043 7001_ $$0P:(DE-Juel1)129662$$aSebold, D.$$b5$$ufzj 000188043 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H. P.$$b6$$ufzj 000188043 7001_ $$0P:(DE-Juel1)129670$$aVaßen, R.$$b7$$ufzj 000188043 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2015.02.003$$gVol. 281, p. 326 - 333$$p326 - 333$$tJournal of power sources$$v281$$x0378-7753$$y2015 000188043 8564_ $$uhttps://juser.fz-juelich.de/record/188043/files/FZJ-2015-01521.pdf$$yRestricted 000188043 8767_ $$92015-02-06$$d2015-03-02$$eColour charges$$jZahlung erfolgt 000188043 909CO $$ooai:juser.fz-juelich.de:188043$$popenCost$$pOpenAPC$$pVDB 000188043 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000188043 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000188043 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000188043 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000188043 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000188043 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000188043 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000188043 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000188043 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000188043 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000188043 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5 000188043 9141_ $$y2015 000188043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145805$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000188043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000188043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000188043 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)145623$$aWissenschaftlicher Geschäftsbereich II$$b3$$kVS-II 000188043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000188043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000188043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000188043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144908$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000188043 9130_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0 000188043 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000188043 920__ $$lyes 000188043 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000188043 980__ $$ajournal 000188043 980__ $$aVDB 000188043 980__ $$aI:(DE-Juel1)IEK-1-20101013 000188043 980__ $$aUNRESTRICTED 000188043 980__ $$aAPC 000188043 981__ $$aI:(DE-Juel1)IMD-2-20101013