001     188043
005     20240711085700.0
024 7 _ |2 doi
|a 10.1016/j.jpowsour.2015.02.003
024 7 _ |2 ISSN
|a 0378-7753
024 7 _ |2 ISSN
|a 1873-2755
024 7 _ |2 WOS
|a WOS:000350930600039
024 7 _ |a altmetric:3805150
|2 altmetric
037 _ _ |a FZJ-2015-01521
041 _ _ |a English
082 _ _ |a 620
100 1 _ |0 P:(DE-Juel1)145805
|a Bünting, A.
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Influence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1424780133_18032
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Pure LiFePO4 (LFP) thin films with different thicknesses are deposited at room temperature by a radio frequency (RF) magnetron-sputtering process. Ti foils with and without titanium nitride (TiN) coating as well as thermally oxidized Si wafers coated with Ti or TiN are used as substrates. In a subsequent annealing step, LiFePO4 thin films are crystallized at 500 °C. The interaction between Ti and LiFePO4 as well as between TiN and LiFePO4 is characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), secondary ion mass spectrometry (SIMS), cyclic voltammetry (CV) and galvanostatic measurements. A severe diffusion of Ti into LiFePO4 is found and leading to the formation of impurity phases which resulting in disturbing crystallization behaviour and rough surfaces. Moreover, 80 nm LiFePO4 thin films do not show the desired electrochemical characteristics when they are deposited on Ti foils directly. By using a TiN interlayer, the diffusion of Ti into LiFePO4 can be blocked resulting in smooth morphologies and improving crystallisation behaviour. Impurity phases do not develop and all samples exhibit the expected electrochemical characteristics. Therefore, TiN is a promising candidate for the use as a current collector in all-solid-state batteries with LiFePO4 electrodes.
536 _ _ |0 G:(DE-HGF)POF3-131
|a 131 - Electrochemical Storage (POF3-131)
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)129580
|a Uhlenbruck, S.
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)158085
|a Dellen, C.
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)145623
|a Finsterbusch, M.
|b 3
700 1 _ |0 P:(DE-Juel1)156244
|a Tsai, C.-L.
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)129662
|a Sebold, D.
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)129594
|a Buchkremer, H. P.
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)129670
|a Vaßen, R.
|b 7
|u fzj
773 _ _ |0 PERI:(DE-600)1491915-1
|a 10.1016/j.jpowsour.2015.02.003
|g Vol. 281, p. 326 - 333
|p 326 - 333
|t Journal of power sources
|v 281
|x 0378-7753
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/188043/files/FZJ-2015-01521.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:188043
|p VDB
|p OpenAPC
|p openCost
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145805
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129580
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)158085
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-Juel1)VS-II-20090406
|6 P:(DE-Juel1)145623
|a Wissenschaftlicher Geschäftsbereich II
|b 3
|k VS-II
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156244
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129662
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129594
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144908
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-123
|1 G:(DE-HGF)POF2-120
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|v Fuel Cells
|x 0
913 1 _ |0 G:(DE-HGF)POF3-131
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21