000188045 001__ 188045
000188045 005__ 20240711085654.0
000188045 0247_ $$2Handle$$a2128/8446
000188045 0247_ $$2ISSN$$a1866-1793
000188045 020__ $$a978-3-95806-016-6
000188045 037__ $$aFZJ-2015-01523
000188045 041__ $$aGerman
000188045 1001_ $$0P:(DE-Juel1)144898$$aNordhorn, Christian$$b0$$eCorresponding Author$$gmale$$ufzj
000188045 245__ $$aSpannungsinduziertes Versagen in Hochtemperaturschichtsystemen$$f2011-07-01 - 2014-12-31
000188045 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2014
000188045 300__ $$a118 S.
000188045 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1426594338_12070
000188045 3367_ $$02$$2EndNote$$aThesis
000188045 3367_ $$2DRIVER$$adoctoralThesis
000188045 3367_ $$2BibTeX$$aPHDTHESIS
000188045 3367_ $$2DataCite$$aOutput Types/Dissertation
000188045 3367_ $$2ORCID$$aDISSERTATION
000188045 4900_ $$aSchriften des Forschungszentrums Jülich, Reihe Energie & Umwelt / Energy & Environment$$v241
000188045 502__ $$aRuhr-Universität Bochum, Diss., 2014$$bDr.$$cRuhr-Universität Bochum$$d2014
000188045 520__ $$aCeramic components in high-temperature coating systems are prone to stress-induced failure because of thermal mismatch and system specific degradation processes. Lifetime models are developed, in order to identify the underlying mechanisms of system failure and to assess the coating system reliability. A probabilistic lifetime model was developed for calculations of the durability of atmospherically plasma sprayed thermal barrier coating systems under thermo-cyclic loading. The model algorithm includes finite element analyses of thermally induced stress fields in consideration of thermally induced oxide scale growth, sintering of the ceramic topcoat, stress relaxation, and microstructural features of the ceramic-metal interface. To reduce the computing time, the interface of two-dimensional models was approximated by periodic functions, which are parameterized based on experimentally determined surface roughness parameters. The results of stress measurements in grown oxide scales by photo-stimulated luminescence-spectroscopy validated the implementations of mechanical boundary conditions, material parameters, and the methodology of microstructure approximation for the subsystem without topcoat. Lifetime relevant stress field distributions calculated on the basis of interface approximation functions were found to be in accordance with stress distributions from three-dimensional finite element analyses with realistic interface structures, which were imported from topography measurements. The lifetime model requires a calibration by presetting an experimental lifetime distribution. The associated cycle dependent calibration parameter re ects the effect of fracture toughness increase for increasing crack length. The calculated stress field distributions are employed in fracture mechanical analyses of subcritical crack growth. A comparison of the transient energy release rate with its crack length dependent critical value results in cumulative distribution functions for the probability of system lifetime in dependence of the cycling conditions. Calculated lifetime expectation values and standard deviations were found to be in accordance to experimental lifetimes determined as a function of interface temperature. The stress field inversion rate directly correlated to oxide scale growth rate was identified as main failure mechanism. Sensitivity analyses were conducted with regard to further parameter effects on the lifetime. The lifetime model algorithm was abstracted and applied to the stress induced failure of chromium evaporation barriers in stacks of solid oxide fuel cells providing a conceptual modelling approach.
000188045 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000188045 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000188045 773__ $$y2014
000188045 8564_ $$uhttps://juser.fz-juelich.de/record/188045/files/FZJ-2015-01523.pdf$$yOpenAccess
000188045 8564_ $$uhttps://juser.fz-juelich.de/record/188045/files/FZJ-2015-01523.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000188045 8564_ $$uhttps://juser.fz-juelich.de/record/188045/files/FZJ-2015-01523.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000188045 8564_ $$uhttps://juser.fz-juelich.de/record/188045/files/FZJ-2015-01523.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000188045 909CO $$ooai:juser.fz-juelich.de:188045$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000188045 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000188045 9141_ $$y2014
000188045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144898$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188045 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000188045 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000188045 920__ $$lyes
000188045 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000188045 9801_ $$aFullTexts
000188045 980__ $$aphd
000188045 980__ $$aVDB
000188045 980__ $$aUNRESTRICTED
000188045 980__ $$aFullTexts
000188045 980__ $$aI:(DE-Juel1)IEK-1-20101013
000188045 981__ $$aI:(DE-Juel1)IMD-2-20101013