000188078 001__ 188078
000188078 005__ 20210129215128.0
000188078 0247_ $$2doi$$a10.1016/j.neuroimage.2015.02.020
000188078 0247_ $$2ISSN$$a1053-8119
000188078 0247_ $$2ISSN$$a1095-9572
000188078 0247_ $$2WOS$$aWOS:000352224100041
000188078 037__ $$aFZJ-2015-01546
000188078 082__ $$a610
000188078 1001_ $$0P:(DE-Juel1)151249$$aDohmen, Melanie$$b0$$eCorresponding Author
000188078 245__ $$aUnderstanding fiber mixture by simulation in 3D Polarized Light Imaging
000188078 260__ $$aOrlando, Fla.$$bAcademic Press$$c2015
000188078 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1428591228_23842
000188078 3367_ $$2DataCite$$aOutput Types/Journal article
000188078 3367_ $$00$$2EndNote$$aJournal Article
000188078 3367_ $$2BibTeX$$aARTICLE
000188078 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188078 3367_ $$2DRIVER$$aarticle
000188078 520__ $$a3D Polarized Light Imaging (3D-PLI) is a neuroimaging technique that has opened up new avenues to study the complex architecture of nerve fibers in postmortem brains. The spatial orientations of the fibers are derived from birefringence measurements of unstained histological brain sections that are interpreted by a voxel-based analysis. This, however, implies that a single fiber orientation vector is obtained for each voxel and reflects the net effect of all comprised fibers. The mixture of various fiber orientations within an individual voxel is a priori not accessible by a standard 3D-PLI measurement. In order to better understand the effects of fiber mixture on the measured 3D-PLI signal and to improve the interpretation of real data, we have developed a simulation method referred to as SimPLI. By means of SimPLI, it is possible to reproduce the entire 3D-PLI analysis starting from synthetic fiber models in user-defined arrangements and ending with measurement-like tissue images. For the simulation, each synthetic fiber is considered as an optical retarder, i.e., multiple fibers within one voxel are described by multiple retarder elements. The investigation of different synthetic crossing fiber arrangements generated with SimPLI demonstrated that the derived fiber orientations are strongly influenced by the relative mixture of crossing fibers. In case of perpendicularly crossing fibers, for example, the derived fiber direction corresponds to the predominant fiber direction. The derived fiber inclination turned out to be not only influenced by myelin density but also systematically overestimated due to signal attenuation. Similar observations were made for synthetic models of optic chiasms of a human and a hooded seal which were opposed to experimental 3D-PLI data sets obtained from the chiasms of both species. Our study showed that SimPLI is a powerful method able to test hypotheses on the underlying fiber structure of brain tissue and, therefore, to improve the reliability of the extraction of nerve fiber orientations with 3D-PLI
000188078 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000188078 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000188078 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x2
000188078 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188078 7001_ $$0P:(DE-Juel1)161196$$aMenzel, Miriam$$b1
000188078 7001_ $$0P:(DE-Juel1)156179$$aWiese, Hendrik$$b2
000188078 7001_ $$0P:(DE-Juel1)142294$$aReckfort, Julia$$b3
000188078 7001_ $$0P:(DE-HGF)0$$aHanke, Frederike$$b4
000188078 7001_ $$0P:(DE-Juel1)131667$$aPietrzyk, Uwe$$b5
000188078 7001_ $$0P:(DE-Juel1)131714$$aZilles, Karl$$b6
000188078 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b7
000188078 7001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b8
000188078 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2015.02.020$$gp. S1053811915001214$$p464–475$$tNeuroImage$$v111$$x1053-8119$$y2015
000188078 8564_ $$uhttps://juser.fz-juelich.de/record/188078/files/1-s2.0-S1053811915001214-main.pdf$$yRestricted
000188078 8564_ $$uhttps://juser.fz-juelich.de/record/188078/files/1-s2.0-S1053811915001214-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000188078 909CO $$ooai:juser.fz-juelich.de:188078$$pec_fundedresources$$pVDB$$popenaire
000188078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151249$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161196$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156179$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000188078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142294$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000188078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131667$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000188078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131714$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000188078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000188078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000188078 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000188078 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000188078 9141_ $$y2015
000188078 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188078 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188078 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188078 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188078 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188078 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188078 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188078 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000188078 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000188078 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000188078 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000188078 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000188078 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000188078 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000188078 980__ $$ajournal
000188078 980__ $$aVDB
000188078 980__ $$aI:(DE-Juel1)INM-1-20090406
000188078 980__ $$aI:(DE-Juel1)INM-4-20090406
000188078 980__ $$aUNRESTRICTED
000188078 981__ $$aI:(DE-Juel1)INM-4-20090406