001     188078
005     20210129215128.0
024 7 _ |a 10.1016/j.neuroimage.2015.02.020
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a WOS:000352224100041
|2 WOS
037 _ _ |a FZJ-2015-01546
082 _ _ |a 610
100 1 _ |a Dohmen, Melanie
|0 P:(DE-Juel1)151249
|b 0
|e Corresponding Author
245 _ _ |a Understanding fiber mixture by simulation in 3D Polarized Light Imaging
260 _ _ |a Orlando, Fla.
|c 2015
|b Academic Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1428591228_23842
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a 3D Polarized Light Imaging (3D-PLI) is a neuroimaging technique that has opened up new avenues to study the complex architecture of nerve fibers in postmortem brains. The spatial orientations of the fibers are derived from birefringence measurements of unstained histological brain sections that are interpreted by a voxel-based analysis. This, however, implies that a single fiber orientation vector is obtained for each voxel and reflects the net effect of all comprised fibers. The mixture of various fiber orientations within an individual voxel is a priori not accessible by a standard 3D-PLI measurement. In order to better understand the effects of fiber mixture on the measured 3D-PLI signal and to improve the interpretation of real data, we have developed a simulation method referred to as SimPLI. By means of SimPLI, it is possible to reproduce the entire 3D-PLI analysis starting from synthetic fiber models in user-defined arrangements and ending with measurement-like tissue images. For the simulation, each synthetic fiber is considered as an optical retarder, i.e., multiple fibers within one voxel are described by multiple retarder elements. The investigation of different synthetic crossing fiber arrangements generated with SimPLI demonstrated that the derived fiber orientations are strongly influenced by the relative mixture of crossing fibers. In case of perpendicularly crossing fibers, for example, the derived fiber direction corresponds to the predominant fiber direction. The derived fiber inclination turned out to be not only influenced by myelin density but also systematically overestimated due to signal attenuation. Similar observations were made for synthetic models of optic chiasms of a human and a hooded seal which were opposed to experimental 3D-PLI data sets obtained from the chiasms of both species. Our study showed that SimPLI is a powerful method able to test hypotheses on the underlying fiber structure of brain tissue and, therefore, to improve the reliability of the extraction of nerve fiber orientations with 3D-PLI
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|x 0
|f POF III
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|x 1
|f SMHB
536 _ _ |a HBP - The Human Brain Project (604102)
|0 G:(EU-Grant)604102
|c 604102
|x 2
|f FP7-ICT-2013-FET-F
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Menzel, Miriam
|0 P:(DE-Juel1)161196
|b 1
700 1 _ |a Wiese, Hendrik
|0 P:(DE-Juel1)156179
|b 2
700 1 _ |a Reckfort, Julia
|0 P:(DE-Juel1)142294
|b 3
700 1 _ |a Hanke, Frederike
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pietrzyk, Uwe
|0 P:(DE-Juel1)131667
|b 5
700 1 _ |a Zilles, Karl
|0 P:(DE-Juel1)131714
|b 6
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 7
700 1 _ |a Axer, Markus
|0 P:(DE-Juel1)131632
|b 8
773 _ _ |a 10.1016/j.neuroimage.2015.02.020
|g p. S1053811915001214
|0 PERI:(DE-600)1471418-8
|p 464–475
|t NeuroImage
|v 111
|y 2015
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/188078/files/1-s2.0-S1053811915001214-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/188078/files/1-s2.0-S1053811915001214-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:188078
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)151249
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161196
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156179
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142294
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131667
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131714
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131632
913 0 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-333
|2 G:(DE-HGF)POF2-300
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21