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Using the Rogers-Young (RY) integral equation scheme for the static pair correlation functions com-
bined with the liquid-phase Hansen-Verlet freezing rule, we study the generic behavior of the radial
distribution function and static structure factor of monodisperse charge-stabilized suspensions with
Yukawa-type repulsive particle interactions at freezing. In a related article, labeled Paper I [J. Gapin-
ski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136, 024507 (2012)], this hybrid method was used
to determine two-parameter freezing lines for experimentally controllable parameters, characteristic
of suspensions of charged silica spheres in dimethylformamide. A universal scaling of the RY ra-
dial distribution function maximum is shown to apply to the liquid-bcc and liquid-fcc segments of
the universal freezing line. A thorough analysis is made of the behavior of characteristic distances
and wavenumbers, next-neighbor particle coordination numbers, osmotic compressibility factor, and
the Ravaché-Mountain-Streett minimum-maximum radial distribution function ratio. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4895965]

I. INTRODUCTION

A large variety of colloidal particles carry surface charges
when dispersed in a polar solvent such as water. The electro-
static repulsion between the colloidal particles can be used to
stabilize them against van der Waals attraction, and to create
soft crystalline structures with applications, e.g., in pho-
tonic band gaps.1 Examples of globular particles of tech-
nological and biological relevance range from solid anor-
ganic and organic colloidal spheres2–4 to soft ionic microgels5

and proteins.6, 7 In addition to being of practical relevance,
charge-stabilized colloids can serve as convenient model sys-
tems for addressing fundamental statistical physics problems,
owing to the experimental viewpoint conveniently accessi-
ble colloidal time and length scales. The electrosteric part
of the effective pair potential between charge-stabilized col-
loidal spheres is commonly modeled as a hard-sphere plus
screened Yukawa potential, with the latter potential part re-
ferred to as the (repulsive) Yukawa potential. In many sys-
tems the Yukawa-type repulsion dominates (masks) residual
short-range attraction and excluded volume interactions. The
particles are then addressed as colloidal Yukawa particles. Re-
garding their equilibrium statistical mechanics properties, col-
loidal Yukawa particles systems at low ionic strength closely
resemble dusty plasmas.8 Yukawa colloidal suspensions have
unique properties, with the crystallization process being one
of the most interesting ones. This justifies an in depth study
of local particle ordering at fluid-solid freezing lines such as
the one presented here.

Our current mainly theoretically oriented articles, Papers
I9 and II, with Paper II used as an abbreviation of the present

a)gapinski@amu.edu.pl

one, have been inspired by an earlier small angle x-ray scat-
tering (SAXS) study of charged colloidal silica spheres sus-
pended in dimethylformamide (DMF).10 In this earlier work,
we have analyzed the SAXS data using the Rogers-Young
(RY) integral equation scheme for the static structure factor
and pair distribution function of the hard-sphere plus Yukawa
repulsion model system.11 The experimental trends in the
salt- and volume fraction dependencies of the SAXS data
are not straightforwardly to comprehend. This has motivated
us to perform an exhaustive theoretical exploration of mi-
crostructural properties of the silica spheres in DMF system,
in terms of experimental control parameters including the sol-
vent salinity, particle volume fraction, and effective particle
charge. In the related previous article, Paper I, the focus was
on two-parameter freezing lines. This is complemented in the
present study, Paper II, by a thorough analysis of the generic
behavior of the static structure factor and the associated pair
distribution function at freezing.

In Paper I, we analyzed the two-parameter freezing lines
of colloidal particles with repulsive Yukawa-type pair interac-
tions for a vast range of interaction parameters, representative
of charge-stabilized silica spheres suspended in DMF. The
freezing lines were determined using the thermodynamically
partially self-consistent Rogers-Young (RY) integral equa-
tion scheme11 for the static structure factor S(q), combined
with the well-known fluid-phase Hansen-Verlet (HV) rule for
the structure factor peak height, Sf(qm), signaling freezing
of the (colloidal) fluid into a crystalline phase.12, 13 Here, q
= qm is the scattering wavenumber location of the principal
peak in S(q). There exist additional one-phase criteria for the
fluid-solid transition such as the Lindeman melting criterion
for the relative mean-squared displacement,14 the Ravaché-
Mountain-Streett (RMS) criterion for the radial distribution

0021-9606/2014/141(12)/124505/14/$30.00 © 2014 AIP Publishing LLC141, 124505-1
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function (RDF) g(r) at freezing,15–17 and the entropy-based
ordering criterion by Giaquinta et al.18, 19 These criteria in-
voke information on properties of one phase only and are im-
plemented with comparatively little numerical effort.

There exist also dynamic fluid-phase freezing criteria
such as the empirical criterion by Löwen et al. for the ratio of
colloidal long-time to short-time self-diffusion coefficients20

which has been successfully applied also for mapping out the
fluid-solid freezing line of dusty plasmas.21 In Ref. 22, the
inter-relation of this dynamic criterion with the static HV cri-
terion was discussed, and alternative dynamic freezing cri-
teria in terms of collective diffusion coefficients have been
presented, which different from the self-diffusion coefficient
are straightforwardly obtained in a dynamic scattering exper-
iment. The calculation of (long-time) diffusion coefficients is
substantially more demanding than that of static properties.
It is thus more economical to determine freezing lines using
static criteria such as the HV rule.

Only systems with hard-core interactions masked by the
soft electric repulsion have been considered in Paper I, repre-
sentative for most charge-stabilized systems, and a constant
HV freezing value Sf(qm) = 3.1 was used. The employed
screened Coulomb (i.e., Yukawa-type) effective pair potential
is of the form

βu(r) = LBZ2

(
eκa

1 + κa

)2
e−κr

r
, r > σ = 2a, (1)

where β = 1/kBT (kB—Boltzmann constant, T—temperature),
r is the center-to-center pair separation, σ is the particle diam-
eter, LB = e2/(εkBT) is the Bjerrum length of the suspending
fluid of static dielectric constant ε at temperature T, and Z is
the effective number of elementary charges e of a colloidal
sphere. The Debye screening parameter, κ , is given by

κ2 = 4πLB[n|Z| + 2Cs]

1 − φ
. (2)

Here, n and Cs are the colloid and added 1-1 electrolyte num-
ber density, respectively, and the free counterions released
from the colloid surfaces are assumed to be monovalent. The
factor 1/(1 − φ), with φ = (4π /3)na3 denoting the colloid
volume fraction, corrects for the free volume available to the
small microions. Particles dispersions which can be modeled
by a Yukawa-type effective pair potential range from charge-
stabilized suspensions of rigid colloidal spheres4, 23, 24 to glob-
ular protein solutions6, 7 and dusty plasmas.8, 25 Soft-spheres
systems such as ionic microgels are also describable on basis
of a screened Coulomb-type effective pair potential, for con-
centrations well below the overlap volume fractions where
also the HV freezing rule remains applicable.26, 27 Charged
silica spheres have been used in extensive studies where the
colloidal suspensions were treated as model systems for liquid
undercooled metals.28–30

RY-HV generated freezing lines have been calculated in
Paper I, for all combinations of the experimentally accessi-
ble system parameters φ, Z, and Cs, with values characteris-
tic of suspensions of charged silica spheres in DMF. Due to
the absence of solvent self-dissociation and carbon dioxide
contamination such as in water, small values of the screening
parameter can be reached with DMF as the solvent. The pur-

pose of Paper I has been to provide experimentalists with a
detailed knowledge base of freezing lines depending on ex-
perimentally controllable parameters.

As discussed in Paper I, the quite differently looking,
application-friendly freezing lines for the experimental pa-
rameter pairs are all equivalent, for the case of hard-sphere
Yukawa systems with masked hard-core interactions (i.e.,
point-Yukawa systems31), to a single universal freezing line
in the two-dimensional parameter space spanned by the re-
duced screening parameter λ = κ〈r〉, and the reduced temper-
ature T̃ = kBT /u(〈r〉). Here, 〈r〉 = n−1/3 is the mean geomet-
ric inter-particle distance, and u(〈r〉) is the electrostatic pair
potential energy at distance 〈r〉.

The universal freezing line in the (λ, T̃ ) parameter space
obtained in Paper I using the RY-HV criterion with constant
value Sf(qm) = 3.1, is found to be in good agreement with
simulation31–36 and density functional theory37, 38 predictions
by various groups, and it has enabled us for extending the
freezing line to values of λ substantially larger than those
accessed in the simulations. We have shown in Paper I that
the universal freezing line for Yukawa-like particles systems
with masked hard-core interactions is only weakly sensitive
to changes in the precise HV criterion value used for Sf(qm).

That the two reduced parameters (λ, T̃ ) suffice to com-
pletely characterize the phase diagram of point-Yukawa parti-
cles is due to the universal form,

βu(x) = 	 exp[−λx]/x = I

T̃
exp[−λ(x − 1)]/x, (3)

of the pair potential, expressed in the reduced pair distance x
= r/〈r〉, which describes charge-stabilized colloidal spheres
with practically zero probability of being in direct contact
with each other. Here, 	 = exp[λ]/T̃ is the reduced coupling
parameter. Moreover, the Ornstein-Zernike equation in units
of the mean particle distance reads39

g(x) − 1 = c(x) +
∫

d3x ′c(|x − x′|)[g(x ′) − 1], (4)

where c(x) is the direct correlation function associated with
the RDF g(x). As a consequence of Eqs. (3) and (4), differ-
ent combinations of the experimentally accessible parameters
{LB/σ , Z, Csσ

3, φ} which give rise to the same state point,
(λ, T̃ ), in the universal phase diagram, are sharing the same
RDF, g(r/〈r〉), and static structure factor,

S(q〈r〉) = 1 + 4π

q〈r〉

∞∫
0

dx x sin(iq〈r〉x)[g(x) − 1], (5)

provided their arguments are expressed in units of the mean
particle distance. For systems of reduced parameter points
(λ, T̃ ) right on the universal freezing line T̃f (λ), the static pair
functions gf(r) and Sf(q), and in particular their principal peak
values gf(rm) and Sf(qm) at locations rm and qm ≈ 2π /rm, re-
spectively, are solely determined by λ.

The good accuracy of the RY predictions for the S(q)’s
and g(r)’s of Yukawa-type particle systems in the fluid phase,
has motivated us to extend our study in Paper I by a thorough
investigation of the fluid-phase, radially averaged local par-
ticle structure under freezing conditions. The purpose of the
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present work is to characterize the generic (scaling) behavior
of g(r) at freezing, by analyzing in particular characteristic
changes in the RDF in going from the lower screening fluid-
bcc part where λ < λt to the larger screening fluid-fcc part
of the freezing line, where λ > λt, and to explore the charac-
teristics of the principal peak value, gf(rm), and the first non-
zero minimum, gf(rdip), of g (r) at freezing at the locations
rm and rdip > rm, respectively. Here, λt is the reduced screen-
ing parameter at the triple point of fluid-bcc-fcc coexistence,
of value λt = 6.935 or λt = 7.7.36 Moreover, our objectives
are to analyze the Ravaché-Mountain-Streett (RMS) freezing
criterion ratio,15–17

RRMS = gf (rdip)/gf (rm), (6)

in its dependence on λ, to characterize the isothermal com-
pressibility factor, Sf(q → 0), along the freezing line, and
to search for possible inter-relations of the characteristic dis-
tances related to gf(r) and Sf(q) with those observed in the
bcc and fcc phases near the triple point. We also examine the
fluid-state mean number of next neighbors close to freezing
for possible indications, if existing on level of the fluid-side
structure factor and RDF, on whether the system freezes into
a bcc or fcc solid, and we investigate the behavior of the pair
potential u(r) near freezing both for systems with low- and
high λ values.

The present Paper II includes an elaborate extension of
the accompanying earlier Paper I which contained also exper-
imental results on charged silica spheres in DMF. Thus, as for
Paper I, the present paper is addressing experimentalists and
theoreticians alike. From a purely theoretical viewpoint, the
discussion of the mean local microstructure at freezing could
be entirely, and most conveniently, made in the framework
of the two-dimensional (λ, T̃ ) phase space. However, experi-
mentalist performing scattering or real-space imaging exper-
iments do not have independent control of these two reduced
parameters, and their respective influence on the microstruc-
ture at freezing is not as easily predictable than for the exper-
imental control parameters. For this reason, and to maintain
a strong link to Paper I even though no experimental results
are included here, the discussion in the present paper is for-
mulated partially in terms of experimental parameters charac-
teristic for charged silica spheres dispersed in DMF. We note
here that the concept of following a colloidal system prop-
erty along lines in the (λ, T̃ ) phase space created by a sin-
gle experimental parameter variation was used before in, e.g.,
Refs. 29 and 40. These lines are referred to by Liu et al.40

as state lines, while in Papers I and II they are named
trajectories.

An interesting finding in Paper I was that the application
of the RY method in conjunction with the HV freezing rule
gives complex freezing lines in terms of experimental parame-
ters reducing all to a single freezing line in (λ, T̃ ) space which
is overall in good agreement with the simulation predictions.
Freezing line calculations using the simple RY-HV method
are much faster than the ones by Molecular Dynamics (MD)
or Monte Carlo (MC) simulations. The RY-HV method is thus
a convenient and reliable tool for generating the various ex-
perimental freezing lines. Moreover, as we are going to show
here, it can be profitably used for the theoretical exploration

of the behavior of various static properties along the (λ, T̃ )
freezing master curve. We explore in particular the height of
the principal peak of g(r) at freezing, characteristic lengths
associated to g(r) and S(q), and the behavior of the particle
coordination number and the isothermal osmotic compress-
ibility factor.

The specific experimentally controllable system param-
eters employed in our RY-HV calculations represent sus-
pensions of charge-stabilized monodisperse silica spheres in
DMF with various amounts of lithium chloride added. Exper-
imental results for these systems have been included in Pa-
per I, and in another work by us.10 We assume a constant
temperature of T = 293 K, spherical particles of diameter
σ = 171 nm, and DMF as solvent with dielectric constant
ε = 36.7, corresponding to the Bjerrum length LB = e2/(εkBT)
= 1.55 mm. Freezing lines in terms of pairs of the experimen-
tal control parameters φ, Cs, and Z have been calculated in
Paper I using the RY integral equation method with a con-
stant HV structure factor peak value Sf(qm) = 3.1 used as
the freezing transition indicator. In the present RY-HV cal-
culations of S(q) and g(r) based on the same constant struc-
ture factor principal peak value, a vast range of experimental
control parameters has been used corresponding to a (λ, T̃ )
freezing line extending far out to large λ values. The results
presented here for the various structural properties at freez-
ing are largely based on the elaborate RY-HV generated data
base of static structure factors and RDFs employed already in
Paper I.

In the Yukawa pair potential employed in the present
study, the most delicate parameter is the effective particle
charge number Z. In an operational way, it can be determined
from matching the theoretical structure factor peak to the ex-
perimental one. However, the occurrence of low-charge and
high-charge branches discussed in Paper I shows that this
matching provides not necessarily a unique charge value. It is
to a larger extent unexplored to date how the effective charge
values determined from the measurement of different prop-
erties such as electrophoretic mobility, shear modulus, and
structure factor principal peak are precisely interrelated. Ex-
perimental works on this issue include colloidal probe exper-
iments with atomic force microscopy,41 electrophoresis,42, 43

optical tweezers and microscopy experiments,44 as well
as conductivity measurements,45 and torsional resonance
spectroscopy.46 Different effective charges have been com-
pared by Shapran et al.47 in a joint experimental-theoretical
study. The effective charge characterizing a specific property
is deduced in experiments on basis of a theoretical underpin-
ning which to date is only approximate. It is still under de-
bate how a property-related effective charge is quantitatively
related to the so-called bare charge. This is referred to as
the charge-renormalization (many-body) problem. The bare
charge is defined on a more fundamental level of description
where the microions are treated as separate entities. The effec-
tive colloid charge in relation to the bare one can be estimated
using simplifying mean-field-type spherical cell model48–50

and self-consistent jellium model calculations,51, 52 and non-
mean-field generalizations accounting for non-monovalent
microions53 and finite microion sizes.54 Noteworthy is a re-
cent primitive model based HNC integral equation study

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.94.122.242 On: Wed, 25 Feb 2015 10:23:18



124505-4 Gapinski, Nägele, and Patkowski J. Chem. Phys. 141, 124505 (2014)

where also chemical charge regulation on the colloid surfaces
has been considered.55

As in Paper I, we refrain from including charge renor-
malization into our quantitative analysis since it is out of the
scope of the present general study where no specific experi-
mental data are discussed. We merely point out here that the
predicted value for the ratio of effective to bare colloid charge
can vary significantly, depending on the invoked (approxi-
mate) charge renormalization method and chemical charge
regulation scheme.

We further remark that in the analysis of scattering data,
polydispersity in particle size and effective charge can be
a source of serious misinterpretations of the actual interac-
tion parameters, if polydispersity is not properly accounted
for in the underlying theoretical modeling. For a discussion,
see, e.g., Refs. 56 and 57. Polydispersity leads in particular
to an enlarged forward scattering, with the consequence that
the measured structure factor at small wavenumbers cannot
be identified any more with the osmotic compressibility fac-
tor. Polydispersity has the additional effect of damping the
wavenumber dependent undulations in the measured structure
factor. While being usually troublesome, one can take advan-
tage of a small amount of polydispersity in the determination
of electrophoretic particle velocities.58 In this paper dealing
with generic static properties of Yukawa particle systems, we
restrict ourselves to monodisperse spheres.

The paper is organized as follows: The results on our RY-
HV study of the local microstructure at freezing are presented
in Sec. II. In Subsections II A–II C, the general behavior of
the reduced screening parameter, the Debye screening length,
and pair potential are examined, for a large variety of systems
with different amounts of added salt. This serves as a prereq-
uisite for the subsequent discussion in Subsection II D of a
variety of microstructural properties. A summary of the ob-
tained results is included in Sec. III.

II. RESULTS AND DISCUSSION

A. Universal T̃ -λ phase diagram

The universal freezing line of Yukawa-type colloidal par-
ticle systems with masked excluded volume interactions, as
predicted by the RY-HV scheme and calculated in Paper
I using the constant HV value Sf(qm) = 3.1, is shown in
Fig. 1 (colored symbols). The RY-HV predicted freezing line
is seen to be in good overall agreement with previously pub-
lished simulation results for the fluid-solid phase separation
lines by Stevens and Robbins34 and Hamaguchi et al.35 The
latter two separation lines are represented in the figure by the
solid lines.

Note that the RY-HV freezing line for Yukawa systems
with masked excluded volume interaction covers a broad
range of λ values extending up to 60 (see the inset). In princi-
ple, the freezing line must be distinguished from the melt-
ing line located somewhat below the former one.37 How-
ever, the difference is small for smaller values of λ, and the
(density) difference vanishes altogether at the one-component
plasma (OCP) limit λ → 0 of zero electrostatic screening
where T̃OCP = T̃f (λ = 0) ≈ 9.383 × 10−3 corresponding to

FIG. 1. T̃ vs. λ universal phase diagram of point-Yukawa particles. The
freezing line obtained in Paper I using the RY-HV scheme with Sf(qm)
= 3.1 (symbols) is compared with the simulation predictions by Hamaguchi
et al.35 (blue line) and Stevens and Robbins34 (purple line). The dashed black
line for 0 < λ < 5 represents Eq. (7). It practically coincides with the pre-
dictions of Stevens and Robbins. The inset shows the RY-HV freezing line
for an extended screening parameter range.9 Different colors of the symbols
correspond to the different iso-Cs lines, which cover a very broad range of
values for φ and Z.

the coupling parameter 	OCP = 	f(λ = 0) ≈ 106. As an il-
lustration of this point, we refer to Figs. 9(a) and 9(b) in
Paper I where both the melting and freezing line predic-
tions by Stevens and Robbins34 are shown. The coexistence
regions in charge-stabilized systems have been studied also
experimentally,29, 59, 60 and in various cases the regions of co-
existence were found to be quite extended. It should be noted
here that the density difference in the coexisting fluid and
solid phases is non-universal, being determined not only by
the system specific concentration dependencies of the effec-
tive colloid charge and screening parameter but also by the
microion degrees of freedom influencing the state-dependent
free volume contribution to the free energy (see, e.g., Ref. 61).
In this work, we are only concerned with the microstructure
along the freezing line. The fluid-phase based RY-HV scheme
does not allow to map out fluid-solid coexistence regions.

The employed constant HV Sf(qm) = 3.1 is in agree-
ment with our x-ray scattering experiments on coated sil-
ica spheres in DMF,10 and conforms to computer simula-
tion results32, 34 and density functional theory calculations37, 62

where for masked-core Yukawa particles HV freezing values
around 3 have been reported. As noted already in Paper I, ac-
cording to our calculations the universal freezing line in the
(λ, T̃ ) phase space does not change significantly if the HV
peak value is altered by ±0.1.

For smaller values, λ ≤ 5, of the reduced screening pa-
rameter, the freezing line obtained from computer simulations
is well parameterized by25

T̃f (λ) ≈ T̃OCP [1 + λ + λ2/2]. (7)

A characteristic feature of the universal phase diagram is
the presence of a bcc phase space part at smaller values of λ

and T̃ . The HV criterion does not allow for distinguishing
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the fluid-bcc transition that takes place for smaller screen-
ing parameters from the fluid-fcc transition at larger values
of λ. The triple point of three-phase fluid-bcc-fcc coexis-
tence, which bisects the freezing line into the lower λ and
higher λ parts, is located according to Hamaguchi et al.35 at
(λt = 6.90, T̃t = 0.2856). In more recent simulation work by
Hoy and Robbins,36 a somewhat larger value of λt = 7.7 has
been predicted for the reduced screening parameter at the uni-
versal freezing line triple point. Thus, to our knowledge, there
is still some uncertainty about the precise location of the triple
point. As for the fluid-solid and solid-solid coexistence re-
gions, the RY-HV method does not allow to determine the
triple point of three phases coexistence.

B. Dependence of λ on experimental control
parameters

The interpretation of the universal T̃ -λ phase diagram in
Fig. 1 in terms of the experimentally controllable parameters
is not straightforward. A charge-stabilized colloidal system
is characterized by the following set of experimental control
parameters: sphere radius a = σ /2, effective charge number
Z, volume fraction φ, colloid number concentration n, added
salt concentration CS, and the dielectric constant, ε, of the sol-
vent at a given temperature T. A given set of these parameters
corresponds to a single value for λ and u(〈r〉), respectively.
However, a specific value for λ can be realized by different
combinations of experimental control parameters. This is ex-
emplified in Fig. 2, where λ is plotted as a function of φ for
systems at freezing having different salt concentrations.

According to the λ-φ freezing lines in Fig. 2, two differ-
ent values of λ are found for each value of φ at a given salt
concentration. These values form the low-charge (LZ, lower
curve segments) and high-charge (HZ, upper curve segments)
branches, respectively, of the iso-Cs freezing lines. As we

FIG. 2. Values of the reduced screening parameter λ = κ 〈r〉 for systems at
freezing discussed in the associated Cs − φ freezing lines diagram in Fig. 7
of Paper I. The two solid horizontal lines at λ = 6.9 and λ = 7.7 mark the
somewhat different simulation predictions for the fluid-bcc-fcc triple point
value, λt, in Refs. 35 and 36, respectively. Different colors of the symbols
correspond to different iso-Cs freezing lines, with the values for Cs indicated
in the figure.

FIG. 3. Mean inter-particle distance 〈r〉 (black solid line), and iso-Cs freez-
ing lines of the Debye screening length κ−1 (symbols), for the systems in
Fig. 2, and in Fig. 7 of Paper I. Different colors mark different iso-Cs lines.

have discussed in detail in Paper I, for many systems of a
given volume fraction and salt concentration, the same struc-
ture factor peak height is obtained in general for two very
different effective charge values. The two structure factors are
hard to distinguish from the viewpoint of experimental factors
(true volume fraction, instrument resolution, background),
which may lead to serious errors in positioning the experi-
mental points on the universal phase diagram due to substan-
tial differences in the λ values of the LZ and HZ solutions. For
the systems at freezing studied in this work, the values of λ in
the LZ branch cover the range from about 2 to 12 but values
of λ mainly smaller than 7 are assumed. The values of λ in the
HZ branch are larger than for the low-charge branch solutions,
owing to the larger values that κ attains for high colloid effec-
tive charges. The HZ branch values of λ are all located within
8 < λ < 60. For the majority of HZ systems, however, values
in the more narrow range of 8 < λ < 15 are observed.

Note from the figure that the same value for λ can be
realized by systems at freezing for values for φ, Cs, and Z dif-
fering by several orders of magnitude. This can be understood
from analyzing the dependence of the mean pair distance, 〈r〉,
and the Debye screening length, κ−1, on φ and Cs as depicted
in Fig. 3. One sees from this figure that in going along a low-
salt iso-Cs line, φ changes by 7 orders, 〈r〉 by 2 orders, and
κ−1 by about 3 orders of magnitude.

The figure further reveals that at low and intermediate φ

values, 〈r〉 and κ−1 decline roughly in parallel with increasing
φ, giving rise to comparatively little changes in λ = 〈r〉 κ . For
the HZ branch at high φ, the decrease of the Debye screening
length with increasing concentration is much stronger than the
one of 〈r〉 which results in a strong increase of λ (Fig. 2). In
Fig. 3, the upper part of each iso-Cs curve for κ−1 corresponds
to the LZ, and the lower part to the HZ branch solutions for
Sf(q), as indicated in the figure. Note that the Debye screening
length at freezing is always smaller than the geometric mean
inter-particle distance.
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FIG. 4. Reduced pair interaction energy βuf(r), at freezing calculated for dif-
ferent values of the screening parameter λ ranging from low-λ values (Lλ: λ

< λt) to high-λ values (Hλ: λ > λt). The usage of the normalized distance
parameter r/〈r〉 reduces the freezing curves for a given λ to a single line (cf.
Eq. (3)). The pair energy at mean particle distance, βuf (〈r〉), has values cov-
ering two orders of magnitude, and it is smaller for the Hλ systems while for
the Lλ systems it is larger.

C. Pair interaction energy at freezing

To examine the role of the pair interaction energy, u(r),
at freezing, in Fig. 4 we plot uf(r)/kBT as a function of the
reduced distance r/〈r〉. A logarithmic scale is used for the dis-
played reduced pair energies covering several orders of mag-
nitude. Depending on the specific system, the pair energy at
mean distance, uf(〈r〉), changes from about 0.5 kBT to about
40 kBT. In addition, the slope of uf(r/〈r〉)/kBT, which in the
present linear-log plot is equal to −(λ + 〈r〉/r)/2.3, covers a
broad range of values for the considered reduced screening
parameter range.

In Fig. 4, the subset of curves for systems where λ is
small (labeled Lλ) in the sense that λ < λt, is qualitatively
different from the subset of systems with λ > λt large (labeled
Hλ). The Lλ subset is entirely composed of LZ systems. In
contrast, the Hλ subset consists both of HZ systems and a
smaller fraction of LZ systems. The reduced pair energy at
mean distance, uf (〈r〉)/kBT, of the Lλ systems at freezing is
large, with values from 5 to 40 kBT, but the absolute value
of the (negative) slope of the potential energy is quite small.
Thus, the pair potential of Lλ systems is long-ranged.

Quite differently from this, the uf(〈r〉) values of the Hλ

systems at freezing are comparatively small, in the range from
0.5 to 5 kBT, but the absolute value of the potential slope is
much larger than that of the Lλ systems. The pair potential of
Hλ systems decays rather steeply.

These general features of u(r) are related to the freezing
behavior: Lλ systems characterized by λ < λt and a long-
ranged u(r) freeze into bcc crystals (see Fig. 1), whereas the
Hλ systems characterized by λ > λt and a short-ranged pair
potential form fcc crystals at freezing.

The screening of the electrostatic pair interactions be-
tween colloidal spheres is caused both by counterions re-
leased from colloid surfaces and dissociated added salt ions.
The square of the Debye screening parameter, κ2 = κci

2

FIG. 5. Relative contribution of surface-released counterions (ci) to the De-
bye screening parameter, κ , for the systems in Fig. 2, as a function of φ

in (a) and λ in (b), respectively. LZ and HZ label the low-charge and the
high-charge branch systems, respectively. The horizontal solid line marks
κs = κci. The thick black line connects systems separating the LZ and HZ
branches along the considered iso-Cs lines, both in (a) and (b). The vertical
dashed line in (b) indicates the triple point value λt of the fcc-bcc crossover at
the freezing line. Different colors of the symbols correspond to the different
iso-Cs freezing lines. The same color code as in Fig. 2 is used.

+ κs
2, consists thus of the surface-released counterion con-

tribution, κci
2, and the salt ion contribution κCs

2. The set of
screening parameter values for which κs ≈ κci marks the tran-
sition regime from surface counterion to salt ion dominated
microstructure.

The ratio, κci/κ , of surface-released counterions to the
total screening parameter is shown in Figs. 5(a) and 5(b) as
a function of φ and λ, respectively, for systems at freezing
covering a broad range of colloid and salt concentrations.
From this figure, one directly identifies the regions where the
screening parameter is dominated either by surface-released
counterions or added salt ions. Note that these regions are not
directly correlated with the LZ and HZ branches.

In Fig. 5(a), each iso-Cs curve has a point of smallest vol-
ume fraction φ for which a system can crystallize according
to the RY-HV rule. These points are connected in the figure by
thick black solid line segments, and they separate along each
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iso-Cs line the LZ from the HZ systems (as indicated in the
figure). From Fig. 5(a), one notices that all these points are
located in the salt dominated region where κs > κci.

Fig. 5(b) depicts the iso-Cs lines for κci/κ as functions
of the reduced screening parameter. Quite interestingly, on
increasing the colloid concentration along the LZ branch of
each iso-Cs curve for κci/κ , a minimum of all curves at about
the same value λ ≈ 6.9 ≈ λt is observed, followed by a rapid
increase towards the counterion dominated region at high col-
loid concentrations. The minima in Fig. 5(b) at λ ≈ λt cor-
respond to the minima in Fig. 5(a). The latter are however
dispersed over five orders of magnitude in the volume frac-
tion. At first sight, the concave shapes of the iso-Cs curves in
Fig. 5(b) with a minimum at λ ≈ λt appear surprising, since
with increasing φ more counterions should be present and
hence κci/κ should become larger (assuming a constant Z).
However, on moving along a freezing line each point in the
line represents a system with its own specific effective charge.
And indeed, the effect of increasing φ starting from very low
concentration is more than compensated by an accompanying
decrease in Z so that κci/κ is decreasing until the minimum at
λ ≈ λt is reached. When φ is further enlarged, the counterion
contribution to screening increases monotonically. Not only
the relative contribution of κci to κ has a minimum at λ ≈ λt.
Also in absolute numbers κci has a minimum for the same
value of λ. Moreover, since along the iso-Cs line κs = const,
the total screening parameter κ has as well a maximum at this

point. Fig. 5 suggests that along each iso-Cs freezing line the
Debye screening length is largest at λ ≈ λt.

Note finally that the complicated looking shape of the
curves in Fig. 5(b) is a consequence of the non-monotonic
volume fraction dependence of λ.

D. Microstructure at freezing and related lengths

1. Static structure factor and radial distribution
function

Information on the radially averaged near-range ordering
of an isotropic colloidal fluid is encoded in the equilibrium
RDF g(r) through its dependence on the distance, r, between
pairs of colloidal spheres. The same microstructural informa-
tion, but encoded now in the reciprocal wavenumber space, is
included in its inverse Fourier transform pair, the static struc-
ture factor S(q). The latter quantity is more easily accessible
experimentally in a three-dimensional bulk suspension by us-
ing scattering experiments. The fluid microstructure, on the
other hand, is best analyzed theoretically in real space in terms
of g(r). Both in experiments and computer simulations, g(r)
and S(q) can be obtained accurately only in a limited range of
r and q values, respectively. On the other hand, integral equa-
tion schemes such as the RY method allow for the calculation
of these functions over extended ranges of their arguments.

In Figs. 6(a) and 6(b), the RY-HV calculated Fourier
transform pairs, Sf(q) and gf(r), fulfilling the HV freezing

FIG. 6. RY-HV predicted static structure factors and RDFs at freezing, for Lλ systems where λ < 6.9 ≈λt (in (a) and (b)), and systems covering a broad range
of λ values from 2 to 60 (in (c) and (d)). The inset in (d) magnifies the principal peak region of gf(r). Pair distance and wavenumber are scaled in units of the
principal peak positions rm and qm of gf(r) and Sf(q), respectively. Note that the respective Sf(q)’s and gf(r)’s of the Lλ systems nearly coincide, whereas the
systems in (c) and (d) vary significantly regarding the RDF peak height.
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FIG. 7. RY-HV predicted principal peak height of the RDF at freezing, plot-
ted as a function of λ (symbols). The two vertical dashed lines indicate the
fluid-bcc-fcc triple point values λt = 6.9 and 7.7 according to the simula-
tion predictions by Hamaguchi et al.35 and Hoy and Robbins,36 respectively.
The inset depicts the peak height as a function of φ, for various added salt
concentrations. Different colors of the symbols distinguish different iso-Cs
freezing lines. The dotted line in the inset separates the LZ branch (lower
part of curves) from the HZ branch (upper part of curves).

criterion of peak height 3.1 are shown for a variety of Lλ sys-
tems with λ < 6.9 ≈ λt. The wavenumber q and pair distance r
are scaled in units of the positions, qm and rm, of the principal
peaks of Sf and gf, respectively. Quite interestingly, the struc-
ture factors and RDFs of all depicted Lλ systems are practi-
cally coincident even though the volume fraction, with 10−7

< φ < 0.3, and the added salt concentration, with 10−3 μM
< Cs < 10 μM, vary by several orders of magnitude (see also
Fig. 2). While the structure factor peak height, Sf(qm) = 3.1,
is fixed by the employed HV condition, also the RDF peak
height is practically constant with value gf(rm) ≈ 2.6. Note
that the effective temperature of the considered Lλ systems
is not constant but varies by one order of magnitude in the
interval 0.03 < T̃ < 0.3, as it can be noticed from Fig. 1.

In Figs. 6(c) and 6(d), Sf (q) and gf (r) are depicted for a
broad range, 2 ≤ λ ≤ 60, of reduced screening parameter val-
ues extending up to large values. For the Hλ systems where λ

> λt, the Fourier transform pairs change visibly with increas-
ing λ. This changes are most pronounced in the principal peak
region of the RDF, with gf(rm), increasing from 2.6 to 4.3,
for λ increasing from λt to 60. The RDF peak height for the
largest considered screening parameter λ = 60 is still well be-
low the value, gHS

f (r = σ+) ≈ 5.81, of the RDF peak height
of a neutral hard-sphere system at the freezing volume frac-
tion φHS

f ≈ 0.49, for the reason that charge-stabilized spheres
with zero contact probability are considered in this work. The
RDF of neutral hard spheres, on the other hand, has its maxi-
mum at the contact distance r = rm = σ .

To analyze gf(rm) in more detail, in Fig. 7 we plot the
RDF peak height as a function of λ (main figure) and φ (inset).
We first notice from the inset that the shapes of the iso-Cs
freezing lines resemble those in Fig. 2. The different iso-Cs
lines in the inset add up to a single freezing line for gf(rm)
plotted as a function of λ. The various iso-Cs contributions
to this universal line for gf(rm) versus λ are visible in Fig. 7

FIG. 8. RY-HV mixing function, f(αrm), at freezing as a function of λ.

by their different colors. The RDF peak height at freezing is
practically constant with value gf(rm) ≈ 2.6, for λ < 5, which
is close to λt. For larger screening parameters, gf(rm) increases
monotonically.

Recall on viewing Fig. 1 that at freezing there is a one-
to-one relation between λ and βuf (〈r〉) = 1/T̃ . A relation be-
tween gf(rm) and the reduced pair potential, βu(rm), at posi-
tion rm is provided by the RY closure relation,11

g(rm) ≈ e−βu(r
m

) + e−βu(r
m

)

f (σrm)
{ef (αr

m
)[h(r

m
)−c(r

m
)] − 1}, (8)

where f(αr) = 1 − exp[−αr] is the RY mixing function, and
h(r) = g(r) − 1 and c(r) are the total and direct correla-
tion functions, respectively. The mixing parameter value α

∈{0,∞} is determined self-consistently, for each set of sys-
tem parameters, from enforcing the equality of the isother-
mal compressibility derived, respectively, from the pressure
and compressibility equations of state. Fig. 8 shows the cal-
culated RY-HV mixing function values at freezing. For small
λ values, f(αrm) is rather close to one, i.e., located near the
limiting hypernetted-chain (HNC) side of the RY hybrid clo-
sure, while for large λ the Percus-Yevick (PY) limiting form
of the RY closure is favored.

In Fig. 9, the two additive contributions to the RY-HV
peak value g(rm) on the right-hand-side of Eq. (8) are sepa-
rately shown. According to the figure, the practically constant
peak height gf(rm) ≈ 2.6 for λ < λt is due to the second term
in Eq. (8). The first contribution to g(rm) equal to the zero-
concentration limit exp { − βu(rm)} is practically zero for Lλ

systems, for the reason that βu(〈r〉) is here large as compared
to one, with u(rm) ≈ u(〈r〉) (see Fig. 4). Different from this,
the monotonic increase of gf(rm) for values λ > λt is due to
both terms in Eq. (8). Note here again in relation to Fig. 4 that
βuf(〈r〉) ≈ 1 for the Hλ systems where λ > λt.

We proceed by discussing the implications of the RY-HV
freezing rule, for constant Sf(qm) = 3.1, on the RMS freez-
ing criterion ratio RRMS = gf(rdip)/gf(rm) in Eq. (6) between
the first minimum, gf(rdip), of the RDF at position r = rdip
to the right of the principal peak region and gf(rm). For par-
ticles interacting by a repulsive inverse-power-law potential
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FIG. 9. RDF peak height contribution by the first term (lower solid blue
curve) and second term (upper solid red curve) of the right-hand-side of Eq.
(8) to gf (rm) (solid black line). The dashed vertical lines at λt = 6.9 and
λt = 7.7 mark the triple point predictions for λt in Refs. 35 and 36, respec-
tively.

proportional to 1/rn, Hansen and Schiff16 found in their MC
simulations that at crystallization, RRMS decreases from 0.26
at n = 1 to 0.1 at n = 12. The latter value is close to the RMS
ratio for a neutral hard-sphere (HS) system at freezing.

Fig. 10 includes our RY-HV predictions for the RMS
ratio as a function of λ. The RMS ratio is approximately
constant for λ ≤ 5, akin to gf(rm) as depicted in Fig. 7,
while for larger λ values the ratio decreases monotonically. In
fact, the λ-dependence of RRMS in Fig. 10 reflects essentially
the λ-dependence of gf(rm), since gf(rdip) changes only little,
from 0.59 at small λ to 0.53 for the largest considered value
λ = 60.

For small λ, the RY-HV scheme predicts RRMS ≈ 0.23
at freezing. This value is somewhat smaller than the value,
RRMS = 0.26, found by Hansen and Schiff16 in the OCP limit,
λ → 0, of zero electric screening where they calculated
gOCP(rm) ≈ 2.31 and gOCP(rd) ≈ 0.61. These two RDF val-
ues are very likely somewhat imprecise. In a recent HNC

FIG. 10. RY-HV prediction for the ratio RRMS = g(rdip)/g(rm) of point-
Yukawa particles at freezing, as a function of λ. The dashed vertical lines
at λt = 6.9 and λt = 7.7 are the triple point predictions in Refs. 35 and 36,
respectively.

calculation by Heinen based on Ref. 63, the value RRMS
≈ 0.246 has been obtained for λ ≈ 0 close to our RY-HV
result. Quite interestingly, the RRMS values measured in small
angle X-ray and neutron scattering experiments on liquid met-
als in the vicinity of freezing are all located in a small interval
next to 0.23 (see Fig. 10).64, 65 We close the present discussion
of the RMS ratio by pointing out that it is used in the literature
not only as an indicator for crystallization. Wendt and Abra-
ham have argued that RRMS = 0.14 signals the transition into
a supercooled liquid or amorphous state.17

2. Characteristic lengths

The RY-HV scheme provides in particular the values of
the principal peak locations rm and qm of the RDF and static
structure factor at freezing. We relate in the following these
parameters to lengths and associated wavenumbers character-
izing ideal and finite temperature colloidal fcc and bcc crys-
tals of equal particle concentration.

For an ideal (i.e., zero temperature) fcc and bcc lattice,
the distances rm(i) of the first three neighbor shells (i = 1,2,3)
to a given particle are

af cc

√
2

2
, af cc, af cc

√
3/2 for fcc, (9a)

abcc

√
3

2
, abcc, abcc

√
2 for bcc, (9b)

where afcc and abcc are the edge lengths of the conventional
fcc and bcc unit cells, respectively.

Using the relations between afcc, abcc and the mean inter-
particle distance 〈r〉 = n−1/3 given by

af cc = 3
√

4〈r〉 ≈ 1.5874〈r〉, (10a)

abcc = 3
√

2〈r〉 ≈ 1.2599〈r〉, (10b)

we can re-express the distances in Eq. (9) in units of 〈r〉 as

21/6 ≈ 1.122 (12), 22/3 ≈ 1.587 (6),

21/631/2 ≈ 1.944 (24) for fcc, (11a)

2−2/331/2 ≈ 1.091 (8), 21/3 ≈ 1.260 (6),

25/6 ≈ 1.782 (12) for bcc.

(11b)

The numbers in parentheses give the numbers of neighbors
for the considered nearest neighbor distances.

The wavenumbers qm(i) of the first three Bragg peaks for
both zero-temperature lattices are accordingly

2π

af cc

√
3,

2π

af cc

√
4,

2π

af cc

√
8 for fcc, (12a)

2π

abcc

√
2,

2π

abcc

√
4,

2π

abcc

√
6 for bcc. (12b)
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Using Eq. (10), the first three Bragg peak wavenumber posi-
tions expressed in units of 2π /〈r〉 are

2−2/331/2 ≈ 1.091, 21/3 ≈ 1.260, 25/6 ≈ 1.782 (fcc),
(13a)

21/6 ≈ 1.122, 22/3 ≈ 1.587, 21/631/2 ≈ 1.944 (bcc).
(13b)

From this it follows for the first Bragg peak wavenumbers
of the fcc and bcc lattice that 2π

〈r〉qf cc
m

= 0.917 and 2π

〈r〉qbcc(1)
m= 0.891, respectively.

Using Molecular Dynamics (MD) simulations, Robbins
et al.31 presented orientationally averaged RDF g(r) for the
fluid and bcc and fcc crystalline phases of point-Yukawa sys-
tems with small (λ ≈ 3) and moderately large (λ ≈ 10) values
of the reduced screening parameter. Different from an ideal
infinite crystal where only sharp peaks (spikes) are present,
for the simulated high-temperature crystals they found sub-
stantial thermal broadening of the RDF peaks. In the case
of the high-temperature bcc solid (λ ≈ 3) the first two zero-
temperature spikes at relative distance 1.091 and 1.260 have
merged into a single broadened next-neighbor peak of g(r)
having a slight shoulder. In their analysis of the number of
nearest neighbors on basis of g(r), Robbins et al.31 treat this
peak accordingly as a single layer. One can roughly esti-
mate the average position of this merged particle layer by
the population-averaged mean position, rbbc(2), of the first two
neighboring bcc lattice spikes (cf. Eq. (11b)) according to

rbcc(2)/〈r〉 = (8 × 1.091 + 6 × 1.260)/(8 + 6) = 1.163.

(14)
For the upcoming analysis of the RY-HV pair functions at
freezing, we summarize the ideal-crystal based lengths,

rf cc = 1.122〈r〉,
rbcc = 1.091〈r〉,

rbcc(2) = 1.163〈r〉,
2π

q
f cc
m

= 0.916〈r〉,

2π

qbcc
m

= 0.891〈r〉,

characterizing the next-neighbor layer of an ideal macro-
scopic fcc and bcc solid.

In place of rbbc(2), a more useful general definition of
the mean next-neighbor distance suitable also for the high-
temperature fcc solid and the fluid phase is given by

rn =
∫ r

dip

0 r · r2g(r)dr∫ r
dip

0 r2g(r)dr
, (15)

where rdip is the first minimum of g(r) to the right of the (pos-
sibly merged) next-neighbor peak.

For comparison with our RY-HV predictions, we apply
this definition to the MD-generated bcc and fcc RDFs by Rob-
bins et al.31 in their Figs. 14(a) (curve a) and 15(b) (curve
a), respectively. The values for rn calculated from their dig-

FIG. 11. Symbols: RY-HV predictions for mean next-neighbor distance rn
(top curve), the RDF peak position rm (middle curve), and inverse structure
factor peak position 2π /qm (bottom curve) at freezing, plotted as functions of
λ. All displayed lengths are in units of 〈r〉. The horizontal solid and dashed
lines (with distinguishing labels) mark the characteristic lengths for a bcc and
fcc solid discussed in the text. Dashed lines characterize ideal infinite bcc and
fcc crystals, while the solid lines are derived from the simulations of small
clusters. The inset shows the RY-HV values for rn as a function of the volume
fraction. The two vertical dashed-dotted lines mark the two predictions for the
bcc-fcc crossover triple point. Different colors of the symbols correspond to
the different iso-Cs freezing lines.

itized RDFs are r
f cc
n = 1.129〈r〉 for the fcc (λ = 10.1) and

rbcc
n = 1.173〈r〉 for the bcc solid (λ = 3.19).

While in Ref. 31 no orientationally averaged fcc-crystal
structure factors S(q) for larger λ values are shown, it can
be expected that at the onset of crystallization the transla-
tional order is limited to a few unit cells and the first two
closely spaced fcc Bragg spikes (see Eq. (13a)) are naturally
broadened into a single principal peak. This expectation is
supported by our numerical calculation of the orientationally
averaged scattering intensity from small clusters of approxi-
mately 300 beads arranged in the ideal fcc (and bcc) struc-
ture. The wavenumber positions of the structure factor princi-
pal peak of the small fcc and bcc clusters are q

f cc

cluster/(2π )
= 1.118〈r〉 and qbcc

cluster/(2π ) = 1.104〈r〉, respectively. Dif-
ferent from the infinite crystal case, the fcc cluster peak is
located here to the right of the bcc peak, owing to the finite
size effects and merging of the first two fcc Bragg peaks.

Fig. 11 summarizes the RY-HV freezing predictions for
the characteristic lengths, rn, rm, and (2π /qm) in their de-
pendence on λ. For comparison, the lengths rfcc, rbcc, rbcc(2),

2π/q
f cc
m , and 2π/qbcc

m , characterizing the next neighbor and
first Bragg peak positions of the ideal bcc and fcc lat-
tice are depicted (with labels) as horizontal dashed lines.
In addition, the lengths r

f cc
n , rbcc

n , 2π/q
f cc

cluster , and 2π/qbcc
cluster
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characterizing a finite-temperature crystalline solid or cluster
are depicted as solid horizontal lines (red for bcc and blue for
fcc). The inset shows the φ-dependence of the RY-HV predic-
tion for rn.

We discuss now the content of this figure in progressing
from top to bottom. The RY-HV curve for the mean distance,
rn, to the next neighbour shell describes a smooth monotonic
decline from a low-λ plateau value (for λ < 3) corresponding
to a bcc solid at freezing, to a smaller high-λ plateau value
(for λ > 30) corresponding to a fcc solid at freezing. The pre-
dicted two plateau values obtained on basis of the fluid-phase
HV criterion agree nicely with the values r

f cc
n and rbcc

n (solid
lines) for rn gained from the digitized g(r)’s by Robbins et al.
for thermally broadened fcc and bcc solids, respectively. A de-
cent estimate of the bcc and fcc plateau values of the RY-HV
rn is obtained from using ideal crystal next neighbor distances
only when rbcc is replaced by rbcc(2). The latter length defined
in Eq. (14) accounts approximately for the high-temperature
merging of the first and second neighbour spikes into an ef-
fective first neighbour peak of g(r).

Different from rn, the principal peak position rm of the
fluid-phase RY-HV g(r) at freezing is not a proper measure of
the mean radius of the nearest neighbour shell in relation to
the lengths characterizing the first neighbour shell of an ideal
or high-temperature bcc and fcc solid. This is reflected in the
middle part of Fig. 11 depicting values of rm well below those
for the crystal lengths.

The bottom part of the figure includes the RY-HV predic-
tions for the inverse structure factor peak position (2π /qm).
At small λ < 3 and large λ > 60, two plateau values are
approached whose values are very roughly described by the
values 2π/q

f cc

cluster and 2π/qbcc
cluster for a fcc and bcc ordered

cluster, respectively. The difference can be attributed at least
partially to the fact that the clusters are made of a few unit
cells only. This results in a severe broadening of the bcc and
fcc cluster structure factor peaks in comparison to the ones for
an infinite crystal, and to a slight shift of the peak positions
towards smaller q values. As discussed earlier, the first two
Bragg spikes of the zero-temperature fcc cluster merge into a
single effective structure factor peak located now to the right
of the first peak of the bcc cluster. This explains the ordering
2π/q

f cc

cluster < 2π/qbcc
cluster in the figure.

3. Number of nearest neighbors

As proposed by Robbins et al.,31 the number of nearest
neighbors Nn can be used as a probe of symmetry type in
highly ordered colloidal suspensions. The mean number of
nearest neighbors surrounding each particle can be expressed
as

Nn = N (xs = rdip/〈r〉), (16)

where

N (xs) =
x

s∫
0

4πx2g(x)dx, x = r/〈r〉 (17)

is the mean number of neighbors in a sphere of radius rs = xs
· 〈r〉, comparable to rdip.

FIG. 12. RY-HV predictions of the radial dependencies of the three indicated
quantities entering into Eq. (16). The radial distance is scaled in units of 〈r〉.
Results for different values of λ are shown in the range from 1.93 to 58.7.
The values for the RDFs gf(x) at freezing have been multiplied by the factor
10 for better visibility. The two inclined thin lines connect respective minima
for the largest and smallest considered λ values (see text).

Here rdip is the first minimum of g(r) located to the right
of its first peak. The number Nn is an indicator of the local
ordering in a fluid or solid, with g(r) in the latter case taken as
the orientationally averaged pair distribution function. Since
the first two shells of a high-temperature bcc solid form ef-
fectively a single layer, one finds Nn(bcc) = 14 according to
Eq. (11a). The second particle shell of a fcc solid is well sep-
arated from the first one even in the high temperature regime
so that Nn(bcc) = 12 holds as for the ideal crystal. According
to Robbins et al.,31 values of Nn close to 14 and 12 are thus
indicative of a local bcc and fcc symmetry, respectively.

To explore the predictions of the RY-HV scheme for Nn,
ten systems at freezing with different λ values in the range
from 1.93 to 58.7 are considered in Fig. 12. The figure in-
cludes the respective gf (x) (multiplied by 10 for better visi-
bility) and the integrand 4πx2gf (x) going into the definition
of the mean number of next neighbours. The radial distance is
scaled by 〈r〉. We recall here with Fig. 7 that the principal peak
of gf (x) is practically constant with value 2.6 up to λ ≈ 5,
from which it increases monotonically with further increas-
ing λ up to 4.28 at λ = 58.7. The first peak of 4πx2gf (x) is
shifted to the right and the first minimum to the left relative to
the corresponding maximum and minimum of the RDF, which
obviously is due to the 4πx2 factor (dotted line in Fig. 12).

The function N(xs) for the considered ten RY-HV systems
at freezing is displayed in Fig. 13. The location of the point
of minimal slope (inflection point) of N(xs) coincides with the
first minimum of 4πx2g(x) located, according to Fig. 12, to
the left of the first minimum xdip = rdip/〈r〉 of g(x).

The mean number of next neighbors, Nn, as a function
λ, obtained from Fig. 13 using its definition in Eq. (16) is
shown in Fig. 14. For small λ values Nn, is rather close to
Nn(bcc2) = 14, suggesting that the colloidal fluid near freez-
ing has for low λ a near-distance ordering resembling that of
a high-temperature bcc crystal. With increasing λ, the number
of nearest neighbors decreases slightly below Nn (fcc) = 12
which is typical of a fcc solid. The present results based on
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FIG. 13. Mean number of neighbors, N(xs) in a sphere of radius rs = xs〈r〉
obtained using Eq. (17) from the RY-HV based RDFs at freezing shown in
Fig. 10.

the RY-HV scheme should be contrasted with the correspond-
ing MD simulation based findings by Robbins et al.31 who
find bcc-like local structure for their fluid-like g(r)’s even for
λ = 10.1, with Nn close to 13.5. It should be noticed here that
in Ref. 31, the inflection point of N(xs) is claimed to be used
as the integration cutoff variable in Eq. (16) for Nn instead
of xdip. However, it is actually the positions of the minima of
g(r) shown in different figures of Ref. 31, that provide the Nn
values reported by the authors (read from the plots of N(xs) or
calculated from the digitized RDFs). We mention this because
Ref. 31 is a well-established reference in the discussion of the
local order of Yukawa colloidal systems.

The consequences of using the inflection point as the cut-
off integration value is shown in Fig. 14, where the open sym-
bols represent the RY-HV results for Nn obtained in that way.
The difference is substantial and the latter values are incom-

FIG. 14. Filled symbols: Mean number of next neighbors, Nn, for the RY-HV
systems at freezing in Figs. 12 and 13. Different colors correspond to different
iso-Cs freezing lines. The dashed vertical lines at λ = 6.9 and λ = 7.7 are
the triple point predictions in Refs. 35 and 36, respectively. Open symbols:
Values for Nn obtained if in place of rdip the first minimum of 4πr2g(r) is
used in Eq. (16).

FIG. 15. Zero wavenumber limit, Sf (q = 0), of the RY-HV static structure
factor at freezing as a function of λ and φ (inset). The horizontal line at
0.01854 represents the RY result Sf (q = 0) for neutral hard spheres at freez-
ing (φ = 0.494), compatible with the result from Carnahan-Starling model
(0.01857). Different colors correspond to the different iso-Cs freezing lines
of salt concentrations (in μM) indicated in the inset. The dashed vertical lines
at λ = 6.9 and λ = 7.7 are the triple point predictions in Refs. 35 and 36,
respectively.

patible with the former interpretation in terms of a bcc-like
local structure at small λ and a fcc-like structure for large λ.

4. Isothermal osmotic compressibility

The isothermal osmotic compressibility, χT, of a one
component colloidal system is given by

χT

χid
T

= lim
q→0

S(q) = 1 + n

∫
d3r(g(r) − 1), (18)

where χid
T = (nkBT )−1 is the compressibility of an ideal gas.

In Fig. 15 the values of the structure factor extrapolated
to zero q, i.e., Sf (q = 0), at freezing are plotted vs. φ and
λ, respectively, for colloidal systems of different charge, salt,
and colloid concentrations.

While Sf (q = 0) considered as a function of φ has a
rather complex shape (see inset in Fig. 15), Sf (q = 0) is a
unique function of λ in accord with the discussion made in
relation with Eq. (5). As expected, Sf (q = 0) increases mono-
tonically with increasing reduced screening parameter, since
the pair potential becomes increasingly short ranged. In the
Sf (q = 0) versus φ diagram, the upper part of the curves cor-
responds to the high-charge branch solutions of the RY static
structure factor, and the lower part to the low-charge solu-
tions. For a given salt concentration Cs, the compressibility
factor Sf (q = 0) for most of the low-charge branch systems
(corresponding to low λ values) is smaller than that of the
high-charge branch systems (corresponding to high λ).

The horizontal solid line in the main figure represents the
RY value Sf (q = 0) = 0.0185 calculated for a neutral hard-
sphere system at freezing where φ = 0.494. It coincides prac-
tically with the value of 0.0186 calculated directly from the
Carnahan-Starling compressibility equation for hard spheres.
Except for large values of the reduced screening parame-
ter, the here considered masked-core Yukawa-particle sys-
tems at freezing are far less compressible. For the smallest
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TABLE I. RY-HV predicted properties of masked-core Yukawa-particle systems at freezing.

λ λ < λt
a λt

a < λ < 60

S(qm) 3.1 (imposed HV criterion) 3.1 (imposed HV criterion)
S(q = 0) Small, down to 0.0006 Large, up to 0.018
gf(rm) 2.6, constant 2.6–4.3, increasing with λ

βuf(〈r〉) �1, |u(r)| with small slope for long-range repulsion <1 typically, decreasing with λ, large slope of |u(r)|,
increasing with λ, short-range repulsion

rn/〈r〉 1.18—value expected for a small bcc crystal 1.13—value expected for a small fcc crystal
(2π /qm)/〈r〉 0.91—value expected for a small bcc crystal 0.88—value expected for a small fcc crystal
Nn 14—value expected for a small bcc crystal 12—value expected for fcc crystal
Crystal structure bcc-like fcc-like
Concentration Only low-charge branch, all concentrations All concentrations of high-charge branch and some

concentrations of low-charge branch
Added salt concentration <20 μM (for this system) All
Effective charge Low-charge branch Low- and high-charge branch

aSimulation predictions for the reduced screening parameter at the triple point vary between 6.935 and 7.7.36

considered value of λ = 1.09, the compressibility factor is
Sf (q = 0) = 0.0006 which is about 30 times smaller than that
of the hard-sphere system at freezing.

III. CONCLUSIONS

On basis of the RY liquid-state integral equation scheme
and the fluid-phase Hansen-Verlet criterion with constant
value Sf(qm) = 3.1, we have given a thorough discussion on
the behavior of the RDF and static structure factor of repul-
sive Yukawa-particles systems under freezing conditions. In
addition we explored the behavior of the characteristic lengths
associated with the Fourier transform pair. Our focus has been
on Yukawa-system with masked hard-core and short-range at-
tractions, which in (λ, T̃ ) space are characterized by a univer-
sal freezing line. As we have discussed in relation to Eqs. (3)–
(6), this gives rise to universal lines for gf(rm), Sf (0), rm/〈r〉,
rn/〈r〉, 2π /(qm 〈r〉), and Nn as functions of λ.

While the local structure properties at freezing have been
therefore analyzed mainly in their dependence on λ, in search
for general scaling rules, we have additionally discussed these
properties in terms of experimental control parameters for
charge-stabilized silica spheres in DMF, including volume
fraction and added salt concentration. This has allowed us to
make contact with the experimental part in Paper I that trig-
gered the present theoretical study.

Our study has revealed qualitative differences in the lo-
cal structure of low-λ (Lλ, with λ < λt) and high-λ (Hλ, with
λ > λt) systems at freezing, i.e., for systems located well in-
side the bcc and fcc segments, respectively, of the universal
freezing line.

We showed in particular for Lλ systems that the pair in-
teraction energy, uf (〈r〉), at mean particle distance is large
(5–40 kBT) whereas the (negative) slope of βu(r) is small, cor-
responding to a long-range soft repulsion. In contrast, uf (〈r〉)
is small for Hλ systems (i.e., 0.5–5 kBT) but the slope of βu(r)
is now large, implying a shorter-range, less soft repulsion.

If plotted as function of r/rm and q/qm, the RY-HV RDF
g(r) and static structure factors S(q) at freezing are, respec-
tively, practically coincident for the Lλ systems, with prac-
tically constant RDF peak height g(rm) = 2.6 close to the

value found at the isochoric bcc-fluid transition point of the
one-component plasma. This translates into a likewise con-
stant Ravache-Mountain-Streett ratio value RRMS = 0.23, in-
dicative of a freezing transition point for particles with very
long-range repulsive interactions. In the high-λ regime, the
RMS ratio decreases monotonically with increasing λ. One
can thus not formulate a constant-value freezing criterion in
terms of g(r).

While for the Hλ systems the principal peak heights of
S(q) at freezing are identical, as enforced by the imposed HV
rule, the principal peak position varies slightly with λ, as well
as the other maxima and minima amplitudes and wavenum-
ber locations. Significantly more pronounced are instead the
differences in the RDF of the Hλ systems where the principal
peak value gf(rm) increases with increasing λ from 2.6 up to
4.3 at λ = 60.

Another parameter characterizing local order is the mean
nearest neighbor distance rn defined in Eq. (15) in terms of
g(r). This distance in units of 〈r〉 is a unique function of λ. In
the Lλ and Hλ regions, the RY-HV prediction for rn asymp-
totes nicely to plateau values obtained from MD simulations31

of bcc and fcc crystals, respectively. These limiting plateau
values of rn are different from the nearest neighbor distances
of an ideal bcc and fcc crystal, and in particular largely dif-
ferent from the Lλ and Hλ values taken by the RDF peak
position rm.

The RY-HV scheme result for the number of nearest
neighbors, Nn, defined according to Eq. (16) with rdip as upper
integration cutoff, describes a smooth decline of this number
from the Lλ plateau value 13.7 to a Hλ plateau region with
Nn = 11.7. These limiting values are close to the values
Nn(bcc2) = 14 and Nn(fcc) = 12 expected for a high-
temperature bcc and fcc solid, respectively.

The major findings of this study are summarized in
Table I, which serves as a quick reference for scientist dealing
with charge-stabilized suspensions.
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