001     188101
005     20240610121140.0
024 7 _ |2 doi
|a 10.1038/nphoton.2014.321
024 7 _ |2 ISSN
|a 1749-4885
024 7 _ |2 ISSN
|a 1749-4893
024 7 _ |a WOS:000349354300013
|2 WOS
024 7 _ |a altmetric:3079272
|2 altmetric
037 _ _ |a FZJ-2015-01568
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)138778
|a Wirths, S.
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Lasing in direct-bandgap GeSn alloy grown on Si
260 _ _ |a London [u.a.]
|b Nature Publ. Group
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1424866099_18031
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Large-scale optoelectronics integration is limited by the inability of Si to emit light efficiently1, because Si and the chemically well-matched Ge are indirect-bandgap semiconductors. To overcome this drawback, several routes have been pursued, such as the all-optical Si Raman laser2 and the heterogeneous integration of direct-bandgap III–V lasers on Si3, 4, 5, 6, 7. Here, we report lasing in a direct-bandgap group IV system created by alloying Ge with Sn8 without mechanically introducing strain9, 10. Strong enhancement of photoluminescence emerging from the direct transition with decreasing temperature is the signature of a fundamental direct-bandgap semiconductor. For T ≤ 90 K, the observation of a threshold in emitted intensity with increasing incident optical power, together with strong linewidth narrowing and a consistent longitudinal cavity mode pattern, highlight unambiguous laser action11. Direct-bandgap group IV materials may thus represent a pathway towards the monolithic integration of Si-photonic circuitry and complementary metal–oxide–semiconductor (CMOS) technology.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Geiger, R.
|b 1
700 1 _ |0 P:(DE-Juel1)161247
|a von den Driesch, N.
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)128617
|a Mussler, G.
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)128637
|a Stoica, T.
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)128609
|a Mantl, S.
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Ikonic, Z.
|b 6
700 1 _ |0 P:(DE-Juel1)130811
|a Luysberg, M.
|b 7
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Chiussi, S.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Hartmann, J. M.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Sigg, H.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Faist, J.
|b 11
700 1 _ |0 P:(DE-Juel1)125569
|a Buca, D.
|b 12
|u fzj
700 1 _ |0 P:(DE-Juel1)125588
|a Grützmacher, D.
|b 13
|u fzj
773 _ _ |0 PERI:(DE-600)2264673-5
|a 10.1038/nphoton.2014.321
|g Vol. 9, no. 2, p. 88 - 92
|n 2
|p 88 - 92
|t Nature photonics
|v 9
|x 1749-4893
|y 2015
856 4 _ |u http://www.nature.com/nphoton/journal/v9/n2/abs/nphoton.2014.321.html
856 4 _ |u https://juser.fz-juelich.de/record/188101/files/FZJ-2015-01568.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:188101
|p VDB
|p OpenAPC
|p openCost
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138778
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161247
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128617
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128637
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128609
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130811
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)125569
|a Forschungszentrum Jülich GmbH
|b 12
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)125588
|a Forschungszentrum Jülich GmbH
|b 13
|k FZJ
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l Grundlagen für zukünftige Informationstechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)PGI-5-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21