000188112 001__ 188112
000188112 005__ 20240619083507.0
000188112 0247_ $$2doi$$a10.1039/C4SM02816C
000188112 0247_ $$2ISSN$$a1744-683X
000188112 0247_ $$2ISSN$$a1744-6848
000188112 0247_ $$2WOS$$aWOS:000351711800013
000188112 0247_ $$2altmetric$$aaltmetric:3837037
000188112 0247_ $$2pmid$$apmid:25707362
000188112 0247_ $$2Handle$$a2128/22853
000188112 037__ $$aFZJ-2015-01579
000188112 041__ $$aEnglish
000188112 082__ $$a530
000188112 1001_ $$0P:(DE-Juel1)156528$$aRiest, Jonas$$b0$$eCorresponding Author$$ufzj
000188112 245__ $$aDynamics of suspensions of hydrodynamically structured particles: analytic theory and applications to experiments
000188112 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2015
000188112 3367_ $$2DRIVER$$aarticle
000188112 3367_ $$2DataCite$$aOutput Types/Journal article
000188112 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568791607_18881
000188112 3367_ $$2BibTeX$$aARTICLE
000188112 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188112 3367_ $$00$$2EndNote$$aJournal Article
000188112 520__ $$aWe present an easy-to-use analytic toolbox for the calculation of short-time transport properties of concentrated suspensions of spherical colloidal particles with internal hydrodynamic structure, and direct interactions described by a hard-core or soft Hertz pair potential. The considered dynamic properties include self-diffusion and sedimentation coefficients, the wavenumber-dependent diffusion function determined in dynamic scattering experiments, and the high-frequency shear viscosity. The toolbox is based on the hydrodynamic radius model (HRM) wherein the internal particle structure is mapped on a hydrodynamic radius parameter for unchanged direct interactions, and on an existing simulation data base for solvent-permeable and spherical annulus particles. Useful scaling relations for the diffusion function and self-diffusion coefficient, known to be valid for hard-core interaction, are shown to apply also for soft pair potentials. We further discuss extensions of the toolbox to long-time transport properties including the low-shear zero-frequency viscosity and the long-time self-diffusion coefficient. The versatility of the toolbox is demonstrated by the analysis of a previous light scattering study of suspensions of non-ionic PNiPAM microgels [Eckert et al., J. Chem. Phys., 2008, 129, 124902] in which a detailed theoretical analysis of the dynamic data was left as an open task. By the comparison with Hertz potential based calculations, we show that the experimental data are consistently and accurately described using the Verlet–Weis corrected Percus–Yevick structure factor as input, and for a solvent penetration length equal to three percent of the excluded volume radius. This small amount of solvent permeability of the microgel particles has a significant dynamic effect at larger concentrations.
000188112 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000188112 536__ $$0G:(GEPRIS)221475706$$aSFB 985 B06 - Kontinuierliche Trennung und Aufkonzentrierung von Mikrogelen (B06) (221475706)$$c221475706$$x1
000188112 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188112 7001_ $$0P:(DE-HGF)0$$aEckert, Thomas$$b1
000188112 7001_ $$0P:(DE-HGF)0$$aRichtering, Walter$$b2
000188112 7001_ $$0P:(DE-Juel1)130858$$aNaegele, Gerhard$$b3$$ufzj
000188112 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C4SM02816C$$gp. 10.1039.C4SM02816C$$n14$$p2821-2843$$tSoft matter$$v11$$x1744-6848$$y2015
000188112 8564_ $$uhttps://juser.fz-juelich.de/record/188112/files/c4sm02816c-1.pdf$$yRestricted
000188112 8564_ $$uhttps://juser.fz-juelich.de/record/188112/files/1501.02696.pdf$$yOpenAccess
000188112 8564_ $$uhttps://juser.fz-juelich.de/record/188112/files/c4sm02816c-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000188112 909CO $$ooai:juser.fz-juelich.de:188112$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000188112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156528$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000188112 9130_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vSoft Matter Composites$$x0
000188112 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000188112 9141_ $$y2015
000188112 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188112 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000188112 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188112 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188112 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188112 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188112 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000188112 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000188112 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188112 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188112 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000188112 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188112 920__ $$lyes
000188112 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie$$x0
000188112 9801_ $$aFullTexts
000188112 980__ $$ajournal
000188112 980__ $$aVDB
000188112 980__ $$aUNRESTRICTED
000188112 980__ $$aI:(DE-Juel1)ICS-3-20110106