001     188144
005     20220930130039.0
024 7 _ |a 10.1002/2014GL062496
|2 doi
024 7 _ |a 0094-8276
|2 ISSN
024 7 _ |a 1944-8007
|2 ISSN
024 7 _ |a WOS:000351355600016
|2 WOS
024 7 _ |a 2128/16082
|2 Handle
024 7 _ |a altmetric:3056477
|2 altmetric
037 _ _ |a FZJ-2015-01605
082 _ _ |a 550
100 1 _ |a Qu, W.
|0 P:(DE-Juel1)142576
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Predicting subgrid variability of soil water content from basic soil information
260 _ _ |a Hoboken, NJ
|c 2015
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1426768924_11767
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Knowledge of unresolved soil water content variability within model grid cells (i.e., subgrid variability) is important for accurate predictions of land-surface energy and hydrologic fluxes. Here we derived a closed-form expression to describe how soil water content variability depends on mean soil water content (σθ(<θ>)) using stochastic analysis of 1-D unsaturated gravitational flow based on the van Genuchten-Mualem (VGM) model. A sensitivity analysis showed that the n parameter strongly influenced both the shape and magnitude of the maximum of σθ(<θ>). The closed-form expression was used to predict σθ(<θ>) for eight data sets with varying soil texture using VGM parameters obtained from pedotransfer functions that rely on available soil information. Generally, there was good agreement between observed and predicted σθ(<θ>) despite the obvious simplifications that were used to derive the closed-form expression. Furthermore, the novel closed-form expression was successfully used to inversely estimate the variability of hydraulic properties from observed σθ(<θ>) data.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Bogena, H. R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Huisman, J. A.
|0 P:(DE-Juel1)129472
|b 2
|u fzj
700 1 _ |a Vanderborght, J.
|0 P:(DE-Juel1)129548
|b 3
|u fzj
700 1 _ |a Schuh, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Priesack, E.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 6
|u fzj
773 _ _ |a 10.1002/2014GL062496
|g p. n/a - n/a
|0 PERI:(DE-600)2021599-X
|n 3
|p 789-796
|t Geophysical research letters
|v 42
|y 2015
|x 0094-8276
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/188144/files/Qu_et_al-2015-Geophysical_Research_Letters.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/188144/files/Qu_et_al-2015-Geophysical_Research_Letters.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:188144
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)142576
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129472
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
913 0 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21