Hauptseite > Publikationsdatenbank > Element-specific anisotropic growth of shaped platinum alloy nanocrystals > print |
001 | 188154 | ||
005 | 20240610121141.0 | ||
024 | 7 | _ | |a 10.1126/science.1261212 |2 doi |
024 | 7 | _ | |a 0036-8075 |2 ISSN |
024 | 7 | _ | |a 1095-9203 |2 ISSN |
024 | 7 | _ | |a WOS:000346536500061 |2 WOS |
024 | 7 | _ | |a altmetric:2998541 |2 altmetric |
024 | 7 | _ | |a pmid:25525243 |2 pmid |
037 | _ | _ | |a FZJ-2015-01615 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Gan, L. |0 P:(DE-HGF)0 |b 0 |e Corresponding Author |
245 | _ | _ | |a Element-specific anisotropic growth of shaped platinum alloy nanocrystals |
260 | _ | _ | |a Washington, DC [u.a.] |c 2014 |b American Association for the Advancement of Science64196 |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1424958207_16011 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Morphological shape in chemistry and biology owes its existence to anisotropic growth and is closely coupled to distinct functionality. Although much is known about the principal growth mechanisms of monometallic shaped nanocrystals, the anisotropic growth of shaped alloy nanocrystals is still poorly understood. Using aberration-corrected scanning transmission electron microscopy, we reveal an element-specific anisotropic growth mechanism of platinum (Pt) bimetallic nano-octahedra where compositional anisotropy couples to geometric anisotropy. A Pt-rich phase evolves into precursor nanohexapods, followed by a slower step-induced deposition of an M-rich (M = Ni, Co, etc.) phase at the concave hexapod surface forming the octahedral facets. Our finding explains earlier reports on unusual compositional segregations and chemical degradation pathways of bimetallic polyhedral catalysts and may aid rational synthesis of shaped alloy catalysts with desired compositional patterns and properties. |
536 | _ | _ | |a 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41) |0 G:(DE-HGF)POF2-42G41 |c POF2-42G41 |f POF II |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Cui, C. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Heggen, M. |0 P:(DE-Juel1)130695 |b 2 |u fzj |
700 | 1 | _ | |a Dionigi, F. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Rudi, S. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Strasser, P. |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |a 10.1126/science.1261212 |g Vol. 346, no. 6216, p. 1502 - 1506 |0 PERI:(DE-600)2066996-3 |n 6216 |p 1502 - 1506 |t Science |v 346 |y 2014 |x 1095-9203 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/188154/files/FZJ-2015-01615.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:188154 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130695 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-42G41 |2 G:(DE-HGF)POF2-400 |v Peter Grünberg-Centre (PG-C) |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF >= 30 |0 StatID:(DE-HGF)9930 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|