000188155 001__ 188155
000188155 005__ 20240610121141.0
000188155 0247_ $$2doi$$a10.1016/j.actamat.2015.02.016
000188155 0247_ $$2ISSN$$a1359-6454
000188155 0247_ $$2ISSN$$a1873-2453
000188155 0247_ $$2WOS$$aWOS:000353249100033
000188155 037__ $$aFZJ-2015-01616
000188155 082__ $$a670
000188155 1001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b0$$eCorresponding Author$$ufzj
000188155 245__ $$aAtomic structure and chemistry of dislocation cores at low-angle tilt grain boundary in SrTiO3 bicrystals
000188155 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000188155 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1424958611_14226
000188155 3367_ $$2DataCite$$aOutput Types/Journal article
000188155 3367_ $$00$$2EndNote$$aJournal Article
000188155 3367_ $$2BibTeX$$aARTICLE
000188155 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188155 3367_ $$2DRIVER$$aarticle
000188155 520__ $$aDislocations in perovskite oxides have been found to have important impacts on their electronic and ionic transportation properties, which are believed to be related to the structure and chemistry of dislocation cores. For dislocation cores at a 6° low-angle [0 0 1] tilt grain boundary in SrTiO3, an embedded TiOx rocksalt-like structure has been suggested, consistent with a deficiency of Sr. However, direct evidence supporting these suggestions has not been obtained up to now. In this work, we reveal the atomic structure and chemistry of edge dislocation cores at a low-angle [0 0 1] symmetric tilt-boundary in SrTiO3 bicrystals by imaging techniques of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS) with an FEI Titan cube3 60–300 (PICO) microscope operated at 80 kV. The experimental results demonstrate direct evidence for a local coordination of edge-sharing TiO6 octahedra at the dislocation cores, which can be understood as the result of strain. The local coordination of edge-sharing TiO6 octahedra is associated with the face-centered cubic (FCC) NaCl-type TiO phase. The present study therefore provides a solid structural and chemical basis for understanding the properties of dislocations.
000188155 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000188155 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188155 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b1$$ufzj
000188155 7001_ $$0P:(DE-Juel1)130723$$aHouben, Lothar$$b2$$ufzj
000188155 7001_ $$0P:(DE-HGF)0$$aMetlenko, Veronika$$b3
000188155 7001_ $$0P:(DE-HGF)0$$aDe Souza, Roger A.$$b4
000188155 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5$$ufzj
000188155 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6$$ufzj
000188155 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2015.02.016$$gVol. 89, p. 344 - 351$$p344 - 351$$tActa materialia$$v89$$x1359-6454$$y2015
000188155 8564_ $$uhttps://juser.fz-juelich.de/record/188155/files/FZJ-2015-01616.pdf$$yRestricted
000188155 909CO $$ooai:juser.fz-juelich.de:188155$$pVDB
000188155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130723$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000188155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000188155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000188155 9130_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000188155 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000188155 9141_ $$y2015
000188155 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188155 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188155 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188155 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188155 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188155 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188155 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188155 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188155 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000188155 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000188155 920__ $$lyes
000188155 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000188155 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x1
000188155 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000188155 980__ $$ajournal
000188155 980__ $$aVDB
000188155 980__ $$aI:(DE-Juel1)PGI-5-20110106
000188155 980__ $$aI:(DE-Juel1)PGI-7-20110106
000188155 980__ $$aI:(DE-82)080009_20140620
000188155 980__ $$aUNRESTRICTED
000188155 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000188155 981__ $$aI:(DE-Juel1)PGI-7-20110106