000188158 001__ 188158
000188158 005__ 20240610121141.0
000188158 0247_ $$2doi$$a10.1016/j.actamat.2014.09.003
000188158 0247_ $$2ISSN$$a1359-6454
000188158 0247_ $$2ISSN$$a1873-2453
000188158 0247_ $$2WOS$$aWOS:000347017800034
000188158 037__ $$aFZJ-2015-01619
000188158 082__ $$a670
000188158 1001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b0$$eCorresponding Author$$ufzj
000188158 245__ $$aNanodomains and nanometer-scale disorder in multiferroic bismuth ferrite single crystals
000188158 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000188158 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1424959112_14992
000188158 3367_ $$2DataCite$$aOutput Types/Journal article
000188158 3367_ $$00$$2EndNote$$aJournal Article
000188158 3367_ $$2BibTeX$$aARTICLE
000188158 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188158 3367_ $$2DRIVER$$aarticle
000188158 520__ $$aWe report on an investigation of state-of-the-art flux-grown multiferroic bismuth ferrite (BiFeO3; BFO) single crystals by transmission electron microscopy and electron diffraction. The crystals were pre-characterized by piezoresponse force microscopy, electrical resistance and superconducting quantum interference device magnetization measurements. The structurally highly perfect crystals show a ferroelectric stripe domain structure characterized by a domain width of 55 nm. Inside these domains an additional contiguous nanodomain substructure occurs, consisting of 180° related domains, giving rise to satellite reflections at View the MathML source121212-type positions along View the MathML source〈110〉 directions in the electron diffraction pattern corresponding to a characteristic length in real space of 15.5 nm. Furthermore, we present the first atomic-resolution study on the short-range order by aberration-corrected transmission electron microscopy in which all atoms including oxygen are imaged directly. By measuring the –Fe–O–Fe– atom topology, bond angles and atomic distances we derive the electrical dipole moment as well as the magnitude of the magnetic moment on the unit-cell level. The results evidence substantial atomic- to nano-scale disorder. Both the nanodomain substructure as well as the disorder should affect the subtle magnetoelectric interactions in this material and thereby impede the formation of long-range cycloidal spin ordering which up to now was considered an intrinsic feature of the magnetic properties of BiFeO3 single crystals. By Monte Carlo simulation on the basis of a state-of-the-art effective Hamiltonian we scrutinize certain aspects of the phase formation behavior in the BFO system forming the background of single-crystal growth. This study reveals a very sluggish phase evolution behavior, which should make it invariably difficult to obtain structurally fully equilibrated single crystals.
000188158 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000188158 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188158 7001_ $$0P:(DE-Juel1)157631$$aJin, Lei$$b1$$ufzj
000188158 7001_ $$0P:(DE-HGF)0$$aWang, Dawei$$b2
000188158 7001_ $$0P:(DE-HGF)0$$aMi, Shao-Bo$$b3
000188158 7001_ $$0P:(DE-HGF)0$$aAlexe, Marin$$b4
000188158 7001_ $$0P:(DE-HGF)0$$aHesse, Dietrich$$b5
000188158 7001_ $$0P:(DE-HGF)0$$aReichlova, Helena$$b6
000188158 7001_ $$0P:(DE-HGF)0$$aMarti, Xavi$$b7
000188158 7001_ $$0P:(DE-HGF)0$$aBellaiche, Laurent$$b8
000188158 7001_ $$0P:(DE-Juel1)131013$$aUrban, Knut$$b9$$ufzj
000188158 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2014.09.003$$gVol. 82, p. 356 - 368$$p356 - 368$$tActa materialia$$v82$$x1359-6454$$y2015
000188158 8564_ $$uhttps://juser.fz-juelich.de/record/188158/files/FZJ-2015-01619.pdf$$yRestricted
000188158 8767_ $$92014-12-15$$d2015-01-06$$eColour charges$$jZahlung erfolgt
000188158 909CO $$ooai:juser.fz-juelich.de:188158$$popenCost$$pOpenAPC$$pVDB
000188158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157631$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131013$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000188158 9130_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000188158 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000188158 9141_ $$y2015
000188158 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188158 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188158 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188158 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188158 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188158 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188158 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188158 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188158 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000188158 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000188158 920__ $$lyes
000188158 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000188158 980__ $$ajournal
000188158 980__ $$aVDB
000188158 980__ $$aI:(DE-Juel1)PGI-5-20110106
000188158 980__ $$aUNRESTRICTED
000188158 980__ $$aAPC
000188158 981__ $$aI:(DE-Juel1)ER-C-1-20170209