001     188166
005     20210129215141.0
024 7 _ |a 10.1016/0167-8191(94)90012-4
|2 doi
024 7 _ |a 0167-8191
|2 ISSN
024 7 _ |a 1872-7336
|2 ISSN
024 7 _ |a WOS:A1994NY49800002
|2 WOS
024 7 _ |a 2128/11842
|2 Handle
037 _ _ |a FZJ-2015-01627
082 _ _ |a 004
100 1 _ |a Gutheil, Inge
|0 P:(DE-Juel1)132120
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Performance of a parallel matrix multiplication routine on Intel iPSC/860
260 _ _ |a Amsterdam [u.a.]
|c 1994
|b North-Holland, Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1468327735_22462
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The performance of a parallel matrix-matrix-multiplication routine with the same functionality as DGEMM of BLAS3 was tested for different numbers of nodes on a 32-node iPSC/860. The routine was then tunned for maximum performance on this particular computer system. Small changes in the original code lead to substantially higher performance and in all tested configurations there is a critical matrix size n≈50·np, the number of processor, above which Intel's non-blocking isend is more efficient than the blocking csend. This shows that special tuning for a single machine pays off for large matrices.
536 _ _ |a 899 - ohne Topic (POF2-899)
|0 G:(DE-HGF)POF2-899
|c POF2-899
|x 0
|f POF I
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Krotz-Vogel, Werner
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1016/0167-8191(94)90012-4
|g Vol. 20, no. 7, p. 953 - 974
|0 PERI:(DE-600)1466340-5
|n 7
|p 953 - 974
|t Parallel computing
|v 20
|y 1994
|x 0167-8191
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/188166/files/ib-9308.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/188166/files/ib-9308.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/188166/files/ib-9308.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/188166/files/ib-9308.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/188166/files/ib-9308.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/188166/files/ib-9308.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:188166
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132120
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF2-890
|0 G:(DE-HGF)POF2-899
|2 G:(DE-HGF)POF2-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)VDB62
|k ZAM
|l Zentralinstitut für Angewandte Mathematik
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)VDB62
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21