
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

 Interner Bericht

Performance of a
Parallel Matrix Multiplication Routine

on an Intel iPSC/860

Inge Gutheil, Werner Krotz-Vogel*

 KFA-ZAM-IB-9308

 Mai 1993

 (Stand 07.05.94)

(*) PALLAS, Gesellschaft für parallele Anwendungen und Systeme mbH

Hermülheimer Str. 10, D-5040 Brühl

Parallel Computing 20 (1994), pp. 953-974, 1994

Performance of a Parallel Matrix Multiplication Routine on an Intel iPSC/860 ii

1.0 Performance of a Parallel Matrix Multiplication Routine
on Intel iPSC/860

Inge Gutheil

Research Centre Jülich (KFA)

Central Institute for Applied Mathematics

D-52425 Jülich

Werner Krotz-Vogel

PALLAS

Gesellschaft für parallele

Anwendungen und Systeme mbH

Hermülheimer Str. 10

D-50321 Brühl

 Abstract:

The performance of a parallel matrix-matrix-multiplication routine with the same functionality

as DGEMM of BLAS3 was tested for different numbers of nodes on a 32-node iPSC/860. The

routine was then tuned for maximum performance on this particular computer system. Small

changes in the original code lead to substantially higher performance and in all tested config-

urations there is a critical matrix size n≈50.np, the number of processors, above which Intel's

non-blocking isend is more efficient than the blocking csend. This shows that special tuning for

a single machine pays off for large matrices.

1.1 Introduction

On today's distributed memory multiprocessors usually specialized computer scientists develop

specific programs for a few special problems. The average natural scientist avoids porting his

code to these machines. To reduce “startup time”1 for the end user, we need portable parallel

libraries.

The parallel linear algebra library SLAP2 (SUPRENUM Linear Algebra Package) [6, 11, 12]

was developed in the course of the German supercomputer project SUPRENUM [13]. The parts

of this library performing parallel BLAS2 and BLAS3 [4, 5] operations and the solution of linear

equation systems were later on changed to use the PARMACS library [2, 3, 9] instead of

1 learning and code rewriting

2 The SLAP referred to in this paper has nothing to do with the Sparse Linear Algebra Package SLAP.

 1

SUPRENUM FORTRAN message passing. This work was carried out in collaboration between

SUPRENUM GmbH and the German National Research Center for Computer Science, GMD.

Since March 1991, PALLAS GmbH, a German software company for high performance com-

puting, has acquired SLAP. Those parts of SLAP which have been modified to use the

PARMACS library are now distributed by PALLAS GmbH under the name of Scientific Linear

Algebra Package (SLAP) [10]. They can be used on a variety of computers where the

PARMACS library is supported, amongst them the Intel iPSC/860.

SLAP was originally designed as a library of linear algebra routines to be used on distributed

memory multiprocessors (DMMP), using the single program multiple data (SPMD) program-

ming paradigm. It uses a process structure, in most cases a ring of processes, irrespective of the

underlying processor structure. It is assumed that each process can communicate with any other

process. The processes are mapped to the processors by a host program. Usually only one

process is assigned to each processor. The routines have to be called from the node program

with names according to the LAPACK [1] naming conventions with an extension for the parallel

version. Additional calling parameters describing the parallel environment follow those of the

sequential LAPACK routine.

To allow consistent use of any matrix in different SLAP subprograms without any redistribution,

all matrices are distributed to processes as follows: The processes are assumed to be arranged

in a chain. A matrix is distributed to the local memories as blocks of columns, with adjacent

blocks being assigned to neighboring processes. The user chooses the range of columns for each

process. An integer array containing the block description is passed to the routines along with

the numerical arrays (see [10]).

For performance reasons the SLAP subprograms call the sequential BLAS wherever possible

[12]. The communication was designed with the “compute and send ahead” strategy in mind

[6], i.e. data is sent as soon as possible and received as late as necessary.

To determine the performance that can be achieved by such a library, we measured the per-

formance of the parallel BLAS3 matrix multiplication routine DGEMMP from SLAP on

np = 4, 8, 16, 32 processors of an iPSC/860. We compared the results to the performance of

the sequential BLAS3 routine DGEMM of the “Classpack Basic Math Library” written by Kuck

& Ass. and delivered by Intel [8] for single-node computation on the iPSC/860.

1.2 Measuring Performance on iPSC/860

The iPSC/860 has no hardware performance monitor, in contrast to systems such as the CRAY.

There is no global clock information, either, because each processor has its local system clock

and the processors run independently. The only tool to measure performance is the routine dclock

which, on each processor, measures wall clock time since system boot [7].

To measure the performance of a parallel program, information is needed on how long it took

for the routine to finish on all processors. We implemented the program for performance meas-

urement of DGEMMP in the following way:

2

Each processor creates its local part of the input matrices A, B, and C according to the dimen-

sions read in and distributed to the processors by the host program. Thereafter, the processors

are synchronized by a call to the PARMACS command BARRIER or iPSC gsync. After syn-

chronization each processor calls dclock for the first time, and then all processors call DGEMMP

and start the matrix multiplication at the same time. Immediately after DGEMMP is completed,

dclock is called again on each processor. All processors compute the elapsed time and send it

to the host which determines the maximum of the elapsed times on all processors.

To calculate the performance (in MFLOPS) we divided the total number of floating point oper-

ations necessary for a sequential matrix multiplication of the same size by the largest elapsed

time. That means the whole time spent in DGEMMP on the slowest processor was used to

compute the MFLOPS rate and only those floating point operations which are really necessary

for matrix multiplication are counted.

Measuring efficiency for the parallel routine reveals another problem: Usually the efficiency e

of a parallel program is defined by

e =
T1

np.Tnp

=
MFLOPSnp

np.MFLOPS1

where np is the number of processors used, T1 is the time for the sequential program on one

processor, and Tnp is the time for the parallel program on np processors, MFLOPS1 is the

MFLOPS rate achieved on one processor, MFLOPSnp is the MFLOPS rate achieved on np

processors. As explained below (see “Results”) T1 can be measured only for square matrices

with sizes up to n = 800 whereas for np > 4 Tnp can be measured for larger matrices. As

MFLOPS1 increases only slightly for n < 300 and remains almost constant for n > 400 we de-

cided to denote by maxMFLOPS1 the maximum MFLOPS rate achieved on one processor and

defined the efficiency for matrices with n > 800 as if MFLOPS1 = maxMFLOPS1 for n > 800,

i.e.

e =
MFLOPSnp

np.maxMFLOPS1

for n > 800 .

1.3 Realization of DGEMMP

DGEMMP computes C = αA
[T]

B
[T] + βC for distributed matrices A

[T] ∈ IR
m,k, B

[T] ∈ IR
k,n and

C ∈ IR
m,n and scalars α and β which are known to all processes3.

DGEMMP allows four cases for the input matrices which are all treated differently:

Case 1: Neither A nor B have to be transposed.

Case 2: Only A has to be transposed.

Case 3: Only B has to be transposed.

Case 4: Both A and B have to be transposed.

3 [T] here means that transposition of the matrix is optional.

 3

B B

B B B

BBBB

B B B

B B

B

B

A A A A C C C C*,1 *,2*,3 *,4*,2 *,3*,4

1,1

2,1

3,1

4,1

1,2

2,2

3,2

4,2

1,3

2,3

3,3

4,3

1,4

2,4

3,4

4,4

proc 1 2 3 4 1 2 3 4

> >

<

C C C C

*,1 *,2 *,4*,3

C

C

C

C

C

C

C

C

C

C

C

C

B B B B

4,1 4,2 4,3 4,4

3,43,33,23,1

1,1

2,1

1,2

2,2

1,3

2,3

1,4

2,4

proc 1 2 3 4

A*,1

A*,2

A*,3

A*,4

T

T

T

T

T

>

>
>

proc

1

2

3

4

case 1

case 2

A

A

C

B

C

B

*,1

Fig. 1. Distribution of matrices to processes in cases 1 and 2: The dotted lines with arrows

indicate that the blocks of the matrix are sent around the ring of processes.

Let the processes be logically arranged in a ring and numbered from 1 to np. Let A*,i , B*,i , and

C*,i be the column blocks of A, B, and C respectively which process i has in its local memory

on entry to DGEMMP. We refer to these as the local parts of the matrices. The SLAP concept

requires that A, B, and C are column block distributed and not A
T or B

T. So if A has to be

transposed (A ∈ IR
k,m now), A*,i still is the column block of A which process i has in its local

memory. Let A
T

,i denote the transpose of the column block A,i of A, then A
T

*,i is the row block

of AT process i owns.

In those cases, where B needs no transposition let Bj,i and Cj,i be those rows of B*,i and C*,i re-

spectively with the same indices as the columns of A which process j owns on entry to

DGEMMP. If B has to be transposed let Bj,i be those rows of B*,i with the same indices as the

columns of C which process j owns on entry to DGEMMP (see Fig. 1 and Fig. 2).

4

B B

B B B

BBBB

B B B

B B

B

B

A A A A C C C C*,1 *,2*,3 *,4*,2 *,3*,4

1,1

1,2

1,3

1,4

2,1

2,2

2,3

2,4

3,1

3,2

3,3

2,4

4,1

4,2

4,3

4,4

proc 1 2 3 4 1 2 3 4

> >

<

C C C C

1,* 2,* 4,*3,*

C

C

C

C

C

C

C

C

C

C

C

C

B B B B

4,1 4,2 4,3 4,4

3,43,33,23,1

1,1

2,1

1,2

2,2

1,3

2,3

1,4

2,4

proc 1 2 3 4

A*,1

A*,2

A*,3

A*,4

T

T

T

T

T

>

>
>

proc

1

2

3

4

case 3

case 4

A

A

C

B

C

B

*,1

T

TTTT

TTTT

TTTT

TTT

>

>
>

proc

1

2

3

4

TTTT T^^ ^ ^ ^

B*,1

B*,2

B*,3

B*,4

T

T

T

T

proc

1

2

3

4

T
B

Fig. 2. Distribution of matrices to processes in cases 3 and 4: The dotted lines with arrows

indicate that the blocks of the matrix are sent around the ring of processes.

Example: Let np = 4 and all matrices square with size m = n = k = 100. If all matrices are uniformly

and equally distributed across the processes then B*,1 denotes columns 1 to 25 of the matrix B.

B3,1 denotes rows 51 to 75 of columns 1 to 25 of matrix B in all cases. This is a square matrix of

size 25 × 25.

In cases 1 and 2 process i computes its local part of C, C*,i, by multiplying A by the local part

of B, B*,i. The matrices B and C therefore have to be distributed in the same way. As each

process only has its local part A*,i of A in its memory communication is necessary. The compu-

tation and communication is done in np steps.

The algorithms in pseudocode:

(All indices or process numbers i have to be taken as (i − 1) mod np + 1 to fit into the interval

[1, np].)

me = my_process_number

 5

Case 1

 Do k=1,np

If k > 1 Receive A*, me − k + 1 from process me − 1

If k < np Send A*, me − k + 1 to process me + 1

Call DGEMM to compute {C*,me

C*, me

= αA*,me

= αA*, me − k + 1

Bme, me

Bme − k + 1, me

+ βC*, me

+ C*, me

, if k = 1

, else
 Enddo

Case 2

 Do k=1,np

If k > 1 Receive A*, me − k + 1 from process me − 1

If k < np Send A*, me − k + 1 to process me + 1

Call DGEMM to compute Cme − k + 1, me = αA
T

, me − k + 1 B, me + βCme − k + 1, me

 Enddo

In the third case where A needs no transposition but B has to be transposed in the original SLAP

version of DGEMMP not only the local parts A*,i of A are sent around the ring but also parts

of B*,i. In the first step, process i sends all rows of B*,i it does not need itself. In the k-th step

it sends those parts of the received B*,i − k + 1, which it does not need itself, to its neighbor. So a

decreasing number of submatrices of B*,i is sent around the ring along with A*,i. In this case, it

is necessary that B is distributed in the same way as A.

The algorithm in pseudocode:

me = my_process_number

Case 3

 Do k=1,np

If k > 1 Receive A*, me − k + 1 and Bj, me − k + 1 for j∉{me − l | 1 ≤ l < k} from process me − 1

If k < np Send A*, me − k + 1 and Bj, me − k + 1 for j∉{me − l | 0 ≤ l < k} to process me + 1

Call DGEMM to compute {C*, me

C*, me

= αA*, me

= αA*, me − k + 1

B
T

me, me

B
T

me, me − k + 1

+ βC*, me

+ C*, me

, if k = 1

, else
 Enddo

Case 4, where A and B have to be transposed, is treated in a different way. Here the matrix B

is redistributed to a working matrix B
∧

 block row wise by a call to a SLAP auxiliary routine. B
∧

is the same matrix as B. The rows of B
∧

 are the columns of B
∧

T and after redistribution each

process owns those rows of B
∧

 (columns of B
∧

T) which have the same numbers as the columns

of C it owns. Then the algorithm proceeds as in case 2 with B
∧

T instead of B, i.e. case 4 of the

sequential DGEMM is called, not case 2.

6

1.4 Results

The implementation of SLAP on an iPSC/860 hypercube was done by assigning one process to

each processor. Due to the usage of PARMACS the logical ring of processes was embedded in

the hypercube in such a way that neighboring processes in the ring run on neighboring processors

in the hypercube. So in cases 1, 2, and 3 where only ring communication is used only nearest

neighbor communication in the hypercube is necessary.

For several reasons the parallel DGEMMP needs a lot more memory than the sequential

DGEMM. Firstly, we did not want to overwrite the original local part of A (and in case 3 also

B) by the received ones, in order to remove the need for additional communication at the end.

Secondly, the redistribution routine in case 4 needs some working arrays. Finally, a system

communication buffer of the same size as the parts of A and B sent is needed for receiving the

data. As explained later (see “Second step of tuning”) asynchronous receive could not be used.

For each number of processors we measured times and MFLOPS for square matrices of sizes

from n = 100 to the maximum possible size (maxsize) for this number of processors by incre-

menting the size in steps of 100. On one processor maxsize was reached at n = 800, whereas

the limit of DGEMMP on 2 processors was reached at n = 600. We therefore do not consider

DGEMMP on 2 processors. The maximum sizes were maxsize = 800 for 1 and 4 processors,

maxsize = 1200 for 8 processors, maxsize = 1800 for 16 processors and maxsize = 2700 for 32

processors.

In addition to the measurements with all three matrices square, we also measured performance

with one matrix square and of fixed size and the others rectangular with the size of one dimen-

sion varying from 100 to maxsize in steps of 100. Although it is possible to make one dimension

larger than the above mentioned limits for square matrices when making the other dimension

smaller we used the same limits for rectangular matrices as for square ones.

Rectangular matrices were taken into consideration because the parallel routine is not symmetric

in A and B. The matrix A is sent around the ring in all cases whereas parts of the matrix B only

have to be communicated if B needs to be transposed. Even then the communication pattern for

B differs from that for A. The sequential DGEMM was not considered for rectangular matrices.

All measurements were repeated at least three times and the arithmetic mean is shown in the

results.

1.4.1 Square matrices

1.4.1.1 Timing the original SLAP routine

The first results for the original SLAP routine showed that there was a considerable communi-

cation overhead. The maximum performance achieved was 390 MFLOPS on 32 processors for

n = 2400 and none of the matrices transposed (see Fig. 3). This is far below the peak per-

formance of 1920 MFLOPS published by the vendor. 60 MFLOPS per node is only a theore-

tical value: this performance can only be achieved with pipelining, performing one multiplication

together with two additions. With a more realistic scenario of one multiplication and one addition

 7

Fig. 3. Performance of the original SLAP version of DGEMMP: Performance on 1, 4, 8, 16,

and 32 processors. In the left figure none of the matrices is transposed, in the right figure

only B is transposed.

the theoretical peak performance is 40 MFLOPS per node. The best performance of DGEMM

on one processor is 37 MFLOPS and giving 1184 MFLOPS on 32 processors, which cannot

be exceeded. Even compared to this, our result is very inefficient.

For np = 32 and np = 16 we never reached 50% efficiency. On 8 processors an efficiency of 50%

was reached for n = 1000 and on 4 processors the matrix size had to be at least 400 × 400 to

reach 50% efficiency (see Fig. 4). In case 3 (A not transposed, B transposed), where not only

A but also parts of B were sent around the ring, the performance was significantly worse than

in all other cases, including the last case, where B was redistributed in the beginning (see

Fig. 5 left). We think that this is because the redistribution of B by the SLAP auxiliary routine

needs log2np steps (using the virtual connection of all processors to each other), in each of which

n
2 / 2np matrix elements are sent by each processor, whereas in the original DGEMMP algorithm

there is additional data to be sent in np − 1 steps and the average amount of additional elements

is also n
2 / 2np. This also explains why the effect becomes more obvious as the number of

processors gets larger.

To send parts of B along with parts of Aaround the ring, additional system receive-buffer space

is needed for case 3, and thus for 32 processors the matrix size limit maxsize was n = 2500.

1.4.1.2 First step of tuning

Investigation of the code showed that porting SLAP to PARMACS was done in a somewhat

“schematic” way. SUPRENUM FORTRAN allows the programmer to send and receive a list

of data with array subsections and different types of data just like a standard Fortran i/o list.

PARMACS and the iPSC/860 communication require contiguous data in their send command.

So the data from SUPRENUM FORTRAN communication lists had to be put into contiguous

buffers. Therefore routines were written which copy the data from the list to a buffer of 8000

words, send this buffer when it is full, and copy the next part of the list to the buffer until all

elements of the list have been sent. On the receiving side the routines manage the receive request

in the same way by receiving buffers of 8000 words, copying the buffer to the places given in

8

Fig. 4. Efficiency of DGEMMP: Efficiency of DGEMMP original SLAP versus tuned version

with csend. The left figure shows case 1, none of the matrices transposed, the right figure

shows case 3, only B transposed.

the receive list and receiving the next buffer. Subsequent calls to a sending or receiving routine

can append data to the same buffer if there still is some place left. One input parameter tells

when the last call is reached. This made it possible to “translate” implied do-loops in the sending

list without starting a new send for each element.

The buffer size of 8000 elements was chosen arbitrarily. If it were made smaller, more com-

munication startups would be necessary for long messages; if it were larger, more space would

be statically allocated for this buffer, which could not be used for the rest of the program.

Due to this technique, a lot of sends were started to send large array subsections which could

easily be sent as one buffer. As we were familiar with the original SUPRENUM version of the

routine we knew that for algorithmic reasons the matrix sections to be sent were copied to a

working array before sending them. We had to change this array from two dimensions to one

dimension and contigously copy the two-dimensional array sections to the working array. We

could then call the PARMACS SEND, which is the same as iPSC csend, directly. For 4

processors and n = 200 the local part of A, which each processor sends, has 200.50 = 10000

elements and so with a buffer of 8000 elements two sends have to be called instead of one. For

the largest matrix 800.200 = 160000 elements have to be sent, which leads to 20 sends with a

buffer of 8000 elements. On more than 4 processors even more than 20 send and receive

latencies could be eliminated in each step, using this approach. In Fig. 4 we see that an effi-

ciency of 50% is now also possible for np = 16. For smaller np it was achieved with smaller

matrices than in the original version. The highest speed was now 530 MFLOPS on 32 processors

with B not transposed (case 1 and case 2) and n = 2400.

The routine for redistributing B in case 4 could not be changed in the above mentioned way

because the data was not copied to a working array before sending, so there was no workspace

to send whole array sections. This routine therefore remained unchanged. Nevertheless, case 3,

where parts of B were sent instead of redistributing B gave lower performance than case 4, so

we decided to modify case 3. In the tuned version of case 3, the matrix B is redistributed to B
∧

as in case 4 and then the algorithm proceeds as in case 1, with B
∧

T instead of B. As a result of

 9

Fig. 5. Performance of DGEMMP on 16 processors: Performance of the original SLAP version

(left) and the tuned version using csend (right) of DGEMMP on 16 processors of an

iPSC/860, comparison of the four cases of transposition of the input matrices.

this, case 3 and case 4 have nearly the same performance, but are of course slower than case 1

and case 2 because of the overhead for the redistribution (see Fig. 5 right).

After this change the system receive buffer in case 3 had the same size as in the other cases and

so now it was also possible to measure case 3 up to n = 2700 on 32 processors. With the tuned

version using csend, two new phenomena occurred, which we are not able to explain: For cases

1 and 2, where B is not transposed, we had a significant decrease of performance on 32

processors when the matrix size became larger than 2400. For cases 3 and 4, where the matrix

B is redistributed before the computation takes place, this decrease is not as significant as in the

first cases, but here the different measurements showed a large variance, especially for case 3.

For n ≥ 2400 the deviations from the mean exceeded 20% whereas for all other measurements

the deviations from the mean were between 2% and 10%.

1.4.1.3 Second step of tuning

DGEMMP was designed with the “compute and send ahead” strategy [6] in mind, so we ex-

pected a high potential for overlap of communication and computation. This can only be ex-

ploited efficiently by the non-blocking version of the send command, isend, not by the blocking

version, csend. Tht current version of PARMACS does not offer a non-blocking send, therefore

the original iPSC isend has to be used.

Csend blocks the processor until the data to be sent is completely copied to some buffer. With

isend the processor is only blocked for a short time to set up the copy and send command and

continues computing while the communication processor copies the data to the buffer. This can

only be used if the data is not changed during the copying process. As DGEMM does not change

the matrix A, isend can be used to overlap not only the time for moving the data to the other

processor but also the time for copying the data to the buffer with computation.

The asynchronous receive operation irecv for the iPSC puts the received data immediately into

the desired location instead of a receive buffer and thereby saves one copy operation. It over-

10

Fig. 6. Efficiency of DGEMMP: Efficiency of DGEMMP tuned version with csend versus tuned

version with isend. The left figure shows case 1, none of the matrices transposed, the right

figure shows case 3, only B transposed.

writes this location as the message arrives and can not be used if this location is read during this

time. The matrix A is read during the call to DGEMM, so it is not possible to post an irecv for

the next part of A before the call to DGEMM. So the crecv after the call to DGEMM remained

unchanged. To take advantage of irecv in addition to isend, a complete restructuring of the code

would be necessary, which is beyond the scope of this paper.

Nevertheless, for large matrices even the usage of isend alone still leads to better performance

especially for small np. For 4 processors an efficiency of more than 80% was achieved (see

Fig. 6). The maximum performance on 32 processors now reached 724 MFLOPS for

n = 2700 and case 2. The performance for n > 2400 did no longer decrease and the individual

timing measurements for the same case and matrix size deviated less from the arithmetic mean

than for the tuned version using csend, despite the fact that the redistribution routine remained

unchanged.

1.4.2 Rectangular matrices

In our timings we always kept two of the dimensions fixed and varied the other from 100 to

maxsize (see “Results”). So C was always rectangular with variable size whereas either B or A

remained square with fixed size k. For np = 4 we had k = 400 and k = 800, for np = 8 we had

k = 600, 1200, for np = 16 we had k = 900, 1800, and for np = 32 we had k = 900, 1800, 2700.

1.4.2.1 Matrix A rectangular of variable size, B square of fixed size

In this case m is varied from 100 to maxsize whereas k = n = fixed. The number of arithmetic

operations on each processor is O(m.k2)/np.

If B requires no transposition, the total number of elements to be communicated by each

processor is O(m.k). So the computation to communication ratio on each processor is O(k/np).

 11

Fig. 7. Performance on 16 processors, A rectangular, B square and not transposed: Com-

parison between all matrices square and matrix B square of fixed size and A rectangular

of variable size.

This is the same ratio as for A, B, C ∈ IR
k,k. Indeed for all m, the performance in MFLOPS is

in this case nearly the same as for A, B, C ∈ IR
k,k (see Fig. 7).

If B has to be transposed, there is an additional overhead of communicating O(k2 log2np/2np)

elements for the redistribution of B on each processor. This is the same amount of communi-

cation as for A, B, C ∈ IR
k,k. The computation to communication ratio now is

O(
k

np(1 + log2np/2np)
) for A, B, C ∈ IR

k,k
and

O(
k

np(1 + k/m. log2np/2np)
) for A

[T]
, C ∈ IR

m,k
, B ∈ IR

k,k
.

This means that for A[T], C ∈ IR
m,k the computation to communication ratio is smaller than for

A, B, C ∈ IR
k,k for m < k and higher for m > k. For np ≤ 16 and k = maxsize/2 the higher

computation to communication ratio is visible, as the MFLOPS rates still increase slightly for

m > k (see Fig. 8). For np = 32 and k = 900 or k = 1800 this increase can no longer be seen

(see Fig. 9). We think this is due to the factor log2np/2np in the amount of additional commu-

nication which rapidly decreases with an increasing number of processors. The denominator

varies only slightly with m, especially for m > k. So for 32 processors the additional communi-

cation has only slight influence on the performance. A small reduction of this additional com-

munication no longer causes a significant increase of performance.

We are not able to explain why, for all numbers of processors, cases 3 and 4 behave so differ-

ently for small m. We measured the single-node performance for those matrices which have to

be multiplied on each processor for np = 8, n = k = 1200, m = 100, 200, 300, 400 and ar-

rived at a figure of 34 to 35 MFLOPS in cases 1, 2, and 3, but only 16 MFLOPS for

m = 100, 23 MFLOPS for m = 200, 26 MFLOPS for m = 300, and 28 MFLOPS for

m = 400 in case 4. On the other hand cases 3 and 4 behave similarly for square matrices, al-

though the strange behaviour of the sequential routine in case 4 could also be seen, to a lesser

12

Fig. 8. Performance on 8 (upper) and 16 (lower) processors, A rectangular, B square and
transposed: Comparison between all matrices square and matrix B square of fixed size

and A rectangular of variable size.

extent, for those matrices which have to be multiplied on a single processor for np = 8 and

square matrices of size m = n = k = 100, ... , 400 (see Tab. 1 and Fig. 8).

Tab. 1. : The single-node MFLOPS rates for those matrices which have to be multiplied on a

single node for global square matrices of size k.

1.4.2.2 Matrix A square of fixed size, B rectangular of variable size

In this case n is varied from 100 to maxsize whereas m = k = fixed. The number of arithmetic

operations on each processor is O(n.k2)/np.

k case 1 [MFLOPS] case 2 [MFLOPS] case 3 [MFLOPS] case 4 [MFLOPS]

100 19 22 19 12

200 24 29 24 20

300 29 31 29 23

400 29 31 29 26

 13

Fig. 9. Performance on 32 processors, A rectangular, B square and transposed: Comparison

between all matrices square and matrix B square of fixed size and A rectangular of variable

size.

If B requires no transposition the total amount of elements to be communicated by each

processor is O(k2). So the computation to communication ratio on each processor is O(n/np).

This is the same ratio as for A, B, C ∈ IR
n,n. Indeed, in those cases the performance is almost the

same for A, B, C ∈ IR
n,n as for A ∈ IR

k,k and B, C ∈ IR
k,n (see Fig. 10).

If B has to be transposed, additional communication for the redistribution of B is required again.

Now the surplus amount is O(k.n. log2np/2np). The computation to communication ratio is

O(
n

np(1 + n/k. log2np/2np)
) for B

T
, C ∈ IR

k,n
, A ∈ IR

k,k
.

Fig. 10. Performance on 16 processors, A square, B rectangular and not transposed: Com-

parison between all matrices square and matrix A square of fixed size and B rectangular

of variable size.

14

Fig. 11. Performance on 8 (upper) and 16 (lower) processors, A square, B rectangular and
transposed: Comparison between all matrices square and matrix A square of fixed size

and B rectangular of variable size.

It is higher than for A, B, C ∈ IR
n,n if n < k and smaller if n > k. The effect can again be seen

for np ≤ 16 (see Fig. 11) whereas for np = 32 only the decreasing performance for large n and

k = 900 is visible (see Fig. 12).

1.5 Conclusions

For a parallel library routine, which is tuned slightly for the target architecture, acceptable per-

formance up to a maximum of 724 MFLOPS can be achieved on 32 processors. For the matrix

multiplication routine DGEMMP the computation to communication ratio still has great influ-

ence on the performance. We suppose this is at least partially due to the use of crecv, which

includes copying the received data from the receive buffer to the desired location. Restructuring

the routine to use irecv, allowing the receive operation to also be overlapped with computation,

could lead to still better performance for large matrices. For small matrices the amount of

computation may not be large enough to overlap all communication.

 15

Fig. 12. Performance on 32 processors, A square, B rectangular and transposed: Comparison

between all matrices square and matrix A square of fixed size and B rectangular of variable

size.

From Fig. 6 we see that the version of DGEMMP using isend becomes more efficient than the

version using csend if the matrix size n is large enough for the number of processors. On 4

processors n has to be at least 200, on 8 processeors n has to be greater or equal 400, on 16

processors n ≥ 700 is necessary, and on 32 processors n ≥ 1600 is the limit for isend to be more

efficient than csend. This suggests that n/np has to be larger than 50 in order to see the effect

of overlapping the send and computation. We assume the ratio has to be larger still, in order to

overlap also the receive operations by computation.

1.6 Acknowledgement

We would like to thank W. Rönsch, now IBM Scientific Center Heidelberg, the author of the

original SLAP routine DGEMMP and the redistribution routine mentioned in this paper for his

very useful comments.

1.7 References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users' Guide,

SIAM Philadelphia, 1992

[2] L. Bomans, D. Roose, R. Hempel, The Argonne/GMD macros in FORTRAN for portable

parallel programming and their implementation on the Intel iPSC/2, Parallel Computing

15 (1990), 119-132

[3] R. Calkin, R. Hempel, H.-C. Hoppe, and P. Wypior, Portrable Programming with the

PARMACS Message-Passing Library, to appear in Parallel Computing 19 (1993)

[4] J.J. Dongarra, J.J. Du Croz, S.J. Hammarling, and R.J. Hanson, An extended Set of Fortran

Basic Linear Algebra Subprograms, with − Model Implementation and Test Programs,

ACM Trans. Math. Software 14 (1988), 1-32

16

[5] J.J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, A Set of Level 3 Basic Linear

Algebra Subprograms, Argonne National Laboratory, Mathematics and Computer Science

Division, Preprint No. 1, August 1988

[6] I. Gutheil, W. Rönsch, and H. Strauß, Lineare Algebra Software für SUPRENUM,

Forschungszentrum Jülich: Bericht Nr. 2345, Jülich 1990

[7] iPSC/860 FORTRAN SYSTEM CALLS REFERENCE MANUAL, (312234-001), Intel

Corporation, 1992

[8] Kuck & Associates, CLASSPACK Basic Math Library User's Guide, Release 1.2, Docu-

ment 9202003, Champaign, IL, 1992

[9] PALLAS Gesellschaft für Parallele Anwendungen und Systeme mbH, PARMACS, Manual

(1992)

[10] PALLAS Gesellschaft für Parallele Anwendungen und Systeme mbH, SLAP Scientific

Linear Algebra Package, Manual (1991)

[11] W. Rönsch and H. Strauß, A Linear Algebra Package for a Local Memory Multiprocessor:

Problems, Proposals and Solution, Parallel Computing 7 (1988), 413-418

[12] W. Rönsch and H. Strauß, Design Aspects of a Linear Algebra Package for the

SUPRENUM Multiprocessor System, in J. Dongarra, I. Duff, P. Gaffney, and S. McKee

eds., Vector and Parallel Computing, issues in applied research and development, (Ellis

Horwood Ltd. Publ.) (1989) 299-315

[13] U. Trottenberg, Guest Editor, Proceedings of the 2nd International SUPRENUM Collo-

quium 30 September - 2 October 1987, Bonn, Fed. Rep. Germany, Parallel Computing 7

(1988), 263-499

 17

