000188174 001__ 188174
000188174 005__ 20210129215142.0
000188174 0247_ $$2doi$$a10.1016/0360-3199(94)90215-1
000188174 0247_ $$2ISSN$$a0360-3199
000188174 0247_ $$2ISSN$$a1879-3487
000188174 0247_ $$2WOS$$aWOS:A1994NQ87300003
000188174 037__ $$aFZJ-2015-01635
000188174 082__ $$a660
000188174 1001_ $$0P:(DE-HGF)0$$aDivisek, J.$$b0$$eCorresponding Author
000188174 245__ $$aTheoretical analysis and evaluation of the operating data of a bipolar water electrolyser
000188174 260__ $$aNew York, NY [u.a.]$$bElsevier$$c1994
000188174 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1425018002_16011
000188174 3367_ $$2DataCite$$aOutput Types/Journal article
000188174 3367_ $$00$$2EndNote$$aJournal Article
000188174 3367_ $$2BibTeX$$aARTICLE
000188174 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188174 3367_ $$2DRIVER$$aarticle
000188174 520__ $$aThe advanced design of the bipolar water electrolyser comprises the following aspects: electrocatalytic efficiency of the electrodes, corrosion resistance of the materials used, and optimization of process conditions. They depend on the potential, the temperature and distribution of mass in the electrolysis system. All three problem areas are discussed, and attention is first drawn to the importance of the precise determination of the potential position of the electrodes in the electrolyser system. The mathematical methods for determining the necessary data, such as potential distribution, mass transport and temperature profiles of the cell, were presented. The calculations were first carried out for a single cell but due to the periodicity of the properties they can be very simply transferred to systems with several individual cells.
000188174 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000188174 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188174 7001_ $$0P:(DE-Juel1)132269$$aSTEFFEN, B.$$b1$$ufzj
000188174 7001_ $$0P:(DE-HGF)0$$aSchmitz, H.$$b2
000188174 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/0360-3199(94)90215-1$$gVol. 19, no. 7, p. 579 - 586$$n7$$p579 - 586$$tInternational journal of hydrogen energy$$v19$$x0360-3199$$y1994
000188174 909CO $$ooai:juser.fz-juelich.de:188174$$pVDB
000188174 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132269$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188174 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000188174 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000188174 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188174 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188174 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188174 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188174 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188174 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188174 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188174 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000188174 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000188174 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000188174 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000188174 980__ $$ajournal
000188174 980__ $$aVDB
000188174 980__ $$aI:(DE-Juel1)JSC-20090406
000188174 980__ $$aUNRESTRICTED