001     188179
005     20210129215142.0
024 7 _ |a 10.1016/S0167-8191(97)00005-7
|2 doi
024 7 _ |a 0167-8191
|2 ISSN
024 7 _ |a 1872-7336
|2 ISSN
024 7 _ |a WOS:A1997XB80600007
|2 WOS
037 _ _ |a FZJ-2015-01639
082 _ _ |a 004
100 1 _ |a Basermann, A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Preconditioned CG methods for sparse matrices on massively parallel machines
260 _ _ |a Amsterdam [u.a.]
|c 1997
|b North-Holland, Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1425018174_13886
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Conjugate gradient (CG) methods to solve sparse systems of linear equations play an important role in numerical methods for solving discretized partial differential equations. The large size and the condition of many technical or physical applications in this area result in the need for efficient parallelization and preconditioning techniques of the CG method, in particular on massively parallel machines. Here, the data distribution and the communication scheme for the sparse matrix operations of the preconditioned CG are based on the analysis of the indices of the non-zero elements. Polynomial preconditioning is shown to reduce global synchronizations considerably, and a fully local incomplete Cholesky preconditioner is presented. On a PARAGON XP/S 10 with 138 processors, the developed parallel methods outperform diagonally scaled CG markedly with respect to both scaling behavior and execution time for many matrices from real finite element applications.
536 _ _ |a 899 - ohne Topic (POF2-899)
|0 G:(DE-HGF)POF2-899
|c POF2-899
|x 0
|f POF I
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Reichel, B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schelthoff, C.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/S0167-8191(97)00005-7
|g Vol. 23, no. 3, p. 381 - 398
|0 PERI:(DE-600)1466340-5
|n 3
|p 381 - 398
|t Parallel computing
|v 23
|y 1997
|x 0167-8191
856 4 _ |u https://juser.fz-juelich.de/record/188179/files/FZJ-2015-01639.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:188179
|p VDB
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF2-890
|0 G:(DE-HGF)POF2-899
|2 G:(DE-HGF)POF2-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21