
M
it
g
li
ed

d
er

H
el
m
h
o
lt
zg

em
ei
n
sc
h
a
ft

Jülich Supercomputing Centre

Technical Report

JUQUEEN Extreme Scaling
Workshop 2015

D. Brömmel, W. Frings, B. J. N. Wylie
(Eds.)

FZJ-JSC-IB-2015-01

FORSCHUNGSZENTRUM JÜLICH GmbH
Jülich Supercomputing Centre

D-52425 Jülich, Tel. +49 (2461) 61-6402

Technical Report

JUQUEEN Extreme Scaling Workshop
2015

D. Brömmel, W. Frings, B. J. N. Wylie
(Eds.)

FZJ-JSC-IB-2015-01

(last change: 27.02.2015)

Contents

Introduction 1
Executive Summary . 1
Summary of Results . 3
High-Q Club codes . 7

Application Teams 9
CoreNeuron, the Blue Brain Project . 9
EXASTEEL — Computational Scale Bridging using a FE2TI approach with ex nl/FE2 15
FEMPAR: Scaling Multi-Level Domain Decomposition 23
ICON with HD(CP)2 setup 120 m . 29
MPAS-A Extreme Scaling Experiment . 35
Direct Numerical Simulations of Fluid Turbulence at Extreme Scale with psOpen . . 41
SHOCK: Structured High-Order Computational Kernel 47

JUQUEEN Extreme Scaling Workshop 2015

Dirk Brömmel, Wolfgang Frings, and Brian J. N. Wylie

Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH

Executive Summary

From 5 to 6 February 2015, Jülich Supercomputing Centre (JSC) organised the latest edition
of its series of Blue Gene Extreme Scaling Workshops. These workshops started with the
2008 Blue Gene Porting, Tuning & Scaling Workshop [1] using the JUGENE Blue Gene/P,
then followed by dedicated Extreme Scaling Workshops in 2009 [2], 2010 [3] and 2011 [4].
These latter three workshops attracted 28 teams selected from around the world to investigate
scalability on the most massively-parallel supercomputer at the time with its 294 912 cores.
26 of their codes were successfully executed at that scale, three became ACM Gordon Bell prize
finalists, and one participant was awarded an ACM/IEEE-CS George Michael Memorial HPC
fellowship. The Leibniz Supercomputing Centre (LRZ) adopted a similar format for workshops
in 2013 [5] and 2014 [6] to scale applications on the SuperMUC IBM iDataPlex system, and
from 28 participating code teams three succeeded in running on all 18 “thin node” islands
(147 456 cores in total).

The focus for the current workshop was on application codes likely to be able to scale
during the workshop to run on the full JUQUEEN system [7]. This 28-rack IBM Blue Gene/Q
with 28 672 compute nodes, consisting of 1.6 GHz PowerPC A2 processors each with 16 cores
(64 hardware threads) and 16 GB of node memory, has a total of 458 752 cores capable of
running 1 835 008 processes or threads. A broad variety of 17 application codes which have
demonstrated that they can productively exploit the entire JUQUEEN resources have already
been recognised as members of the High-Q Club [8]. The High-Q Club is a collection of the
highest scaling codes on JUQUEEN and as such requires the codes to run on all 28 racks. Codes
also have to demonstrate that they profit from each additional rack of JUQUEEN in reduced
time to solution when strong scaling a fixed problem size or a tolerable increase in runtime
when weak scaling progressively larger problems. Furthermore the application configurations
should be beyond toy examples and we encourage use of all available hardware threads which
is often best achieved via mixed-mode programming. Each code is then individually evaluated
based on its weak or strong scaling results with no strict limit on efficiency. The workshop
thus provided an opportunity for additional candidates to prove their scalability and qualify
for membership, or – as was the case for one of the codes – improve on the scaling and efficiency
that they had already achieved.

Seven application teams were invited to stay for two days and work on the scalability of
their codes, with dedicated access to the entire JUQUEEN system for a period of 30 hours.
Most of the teams’ codes had thematic overlap with JSC Simulation Laboratories or were part
of an ongoing collaboration with one of the SimLabs. Following earlier tradition, the 2015
Extreme Scaling Workshop was directly preceded by a Porting and Tuning Workshop, offered
by JSC as part of the PRACE Advanced Training Centre (PATC) curriculum. Hence most of
the application teams were among the 25 new and more experienced users of JUQUEEN who
were also present for the prior three days and used the opportunity for initial preparations,
performance analyses and tuning tips.

1

2 JUQUEEN Extreme Scaling Workshop 2015

During both workshops the code teams were supported by JSC Cross-sectional teams and
Climate Science, Fluids & Solids Engineering and Neuroscience SimLabs, along with IBM and
JUQUEEN technical support. Particular thanks are due to Sandra Diaz, Markus Geimer,
Klaus Görgen, Sabine Grießbach, Lars Hoffmann, Michael Knobloch, Alex Peyser, Christoph
Pospiech, Michael Rambadt, Michael Schlottke, Michael Stephan, Alexandre Strube and Kay
Thust, and the workshop participants themselves who openly shared their own knowledge and
expertise.

The seven participating code teams1 were:

• CoreNeuron electrical activity of neuronal networks with morphologically-detailed neurons
Fabien Delalondre, Pramod Kumbhar, Aleksandr Ovcharenko (Blue Brain Project,
EPFL), and Michael Hines (Yale University)

• ex nl/FE2 scale-bridging approach incorporating micro-mechanics in macroscopic simu-
lations of multi-phase steels
Axel Klawonn and Martin Lanser (University of Cologne), Oliver Rheinbach (TU
Freiberg), Jörg Schröder (University Duisburg-Essen), Daniel Balzani (TU Dresden), and
Gerhard Wellein (University Erlangen-Nürnberg)

• FEMPAR massively-parallel finite-element simulation of multi-physics problems governed
by PDEs — High-Q Club member since Dec. 2014
Santiago Badia, Alberto F. Mart́ın, and Javier Principe (Centre Internacional de
Mètodes Numèrics a l’Enginyeria (CIMNE), Universitat Politècnica de Catalunya)

• ICON icosahedral non-hydrostatic atmospheric model
Catrin Meyer (Forschungszentrum Jülich GmbH, JSC) and Thomas Jahns (Deutsches
Klimarechenzentrum GmbH)

• MPAS-A multi-scale non-hydrostatic atmospheric model for global, convection-resolving
climate simulations
Dominikus Heinzeller (Karlsruhe Inst. of Technology, Inst. of Meteorology and Cli-
mate Research) and Michael Duda (National Center for Atmospheric Research, Earth
System Laboratory)

• psOpen direct numerical simulation of fine-scale turbulence
Jens Henrik Goebbert (Jülich Aachen Research Alliance) and Michael Gauding
(TU Freiberg)

• SHOCK structured high-order finite-difference computational kernel for direct numerical
simulation of compressible flow
Manuel Gageik and Igor Klioutchnikov (Shock Wave Lab., RWTH Aachen University)

The workshop surpassed our expectations and completely achieved its goal: all seven teams
succeeded in running and validating their codes on 28 racks within the first 24 hours of access
to the full JUQUEEN system. They also demonstrated excellent strong and/or weak scaling
which qualifies five new members for the High-Q Club: unfortunately, MPAS-A scaling was
limited to only 24 racks (393 216 cores). In this case, the dataset used was insufficient to have
a performance benefit with 28 racks. A total of 370 ‘large’ jobs were executed (58 on 28 racks,
19 on 24 racks, 6 on 20 racks and 105 on 16 racks) using 12 of the 15 million core-hours reserved
for the workshop. Most of the familiar LoadLeveler job scheduling quirks were avoided by deft
sysadmin intervention, and a single nodeboard failure requiring a reset resulted in only a short
outage when smaller jobs could be executed on the remaining racks.

1Workshop participants marked in bold

Introduction 3

Summary of Results

Selected results from the workshop are summarised in this section, pointing out problems or
limitations encountered. Some aspects are compared in relation to the other 16 codes in the
High-Q Club where this is insightful.

Languages vs. Models, Memory vs. Threads Since Blue Gene/Q offers lower-level function
calls for some hardware-specific features that are sometimes not available for all programming
languages, a starting point is looking at the languages used. The left of Figure 1 shows a Venn
set diagram of the programming language(s) used, combining workshop and High-Q Club
codes. It indicates that all three major programming languages are equally popular (without
considering lines of code). Of the workshop codes, three combine Fortran with C, two used C
and C++, and the remaining two exclusively used only either Fortran or C.

The four hardware threads per core of the Blue Gene/Q chip in conjunction with the lim-
ited amount of memory suggest to make use of multi-threaded programming. It is therefore
interesting to see whether this is indeed the preferred programming model and whether the
available memory is an issue. The right of Figure 1 shows a Venn set diagram of the pro-
gramming models used, again combining workshop and High-Q Club codes, and revealing that
mixed-mode programming does indeed dominate. Looking at the workshop codes in particular,
all seven used MPI, which is almost ubiquitous for portable distributed-memory parallelisa-
tion. dynQCD for example is the only High-Q Club application employing lower-level machine-
specific SPI for maximum performance. Three of the workshop codes exclusively used MPI for
their scaling runs, both between and within compute nodes, accommodating to the restricted
per-process memory and even trading higher memory requirements for faster MPI communi-
cator management. The PAMID_COLLECTIVES_MEMORY_OPTIMIZED environment variable was
critical for FEMPAR and ex nl/FE2 to reduce the time of MPI_Comm_split from 15 minutes
down to under 10 seconds. A memory fragmentation issue in a third-party library currently
inhibits the use of OpenMP by FEMPAR. On the other hand MPAS-A just started to include
OpenMP multi-threading, whereas an earlier investigation with the SHOCK code found this
not to be beneficial. The remaining four workshop codes employ OpenMP multi-threading to
exploit compute node shared memory in conjunction with MPI, as is typical of High-Q Club
applications in general. Instead of OpenMP, three of the High-Q Club applications prefer
POSIX threading for additional control. CoreNeuron has an ongoing effort investigating use
of OpenMP-3 tasking and new MPI-3 capabilities (e.g. non-blocking collectives) are under
consideration, so these are generally expected to become increasingly important.

Fortran

C

C++

MPI

OpenMP

pthreads

SPI

Figure 1: Venn set diagrams of programming languages (left) and parallel programming models
(right) used by codes in the High-Q Club and the workshop’s participants.

4 JUQUEEN Extreme Scaling Workshop 2015

64

32
16
4

16
32

64

4
16
32

64

IM
D

F
E
M
P
A
R

m
u
P
h
i

M
P
2C

S
H
O
C
K

M
P
A
S
-A

JU
R
A
S
S
IC

p
sO

p
en

ex
n
l/
F
E
2

N
E
S
T

K
K
R
n
an
o

Ju
S
P
IC

IC
O
N

P
E
P
C

d
yn
Q
C
D

co
re
N
eu
ro
n

MPI ranks per node

threads per MPI rankhardware threads

Figure 2: Chart showing the relation between the number of MPI ranks per node and threads
per rank used by the mentioned codes. The number of resulting hardware threads
used on each compute node is shown in red.

For CoreNeuron available memory is the limiting factor for larger simulations, with the cur-
rent limit being 155 million neurons using 15.9 GB of RAM. MPAS-A required 1 GB of memory
on each process for its regular 3 km mesh simulation (over 65 million grid cells with 41 vertical
levels), and could therefore only use a single hardware thread per core, limiting its effective
performance. The other six workshop codes benefited from using all four hardware threads
of each processor code. In this way FEMPAR was able to increase its efficiency and scala-
bility to 1.75 million processes using 271

2 racks of JUQUEEN when employing an additional
(fourth-)level of domain decomposition.

Figure 2 shows the relation between the number of MPI ranks and threads per node where
this information was available for workshop and High-Q Club codes. On either side of this
diagram are the two extremes of using all 64 hardware threads on each CPU by either 64 MPI
ranks or 64 threads. Included in red is the resulting number of hardware threads used by
the codes, i.e. the concurrency. Clearly, where the information is available, the codes seem to
benefit from using more hardware threads than physical cores and favour this configuration.

Weak and strong scaling and performance An overview of the results of a scaling workshop
entails some form of comparison of achievements in strong (fixed total problem size) and weak
(fixed problem size per process or thread) scaling, put in context of the scalability results from
other codes in the High-Q Club.

Figures 3 and 4 show strong and weak scaling results of the workshop codes, including in
grey results from a selection of High-Q Club codes. This indicates the spread in execution
results and diverse scaling characteristics of the codes. The figures show that the workshop
codes not only managed to run on the full JUQUEEN system, but they also achieved very nice
scalability and most therefore qualified for High-Q Club status as an outcome of the workshop.
Note that in many cases the graphs do not have a common baseline of one rack since datasets
sometimes did not fit available memory or no data was provided for 1024 compute nodes: for
strong scaling an execution with a mimimum of seven racks (one quarter of JUQUEEN) is
accepted for a baseline, measurement with perfect-scaling assumed from a single rack to the
baseline).

In Figure 3 almost ideal strong-scaling speed-up of 27x on 28 racks is achieved by SHOCK,
whereas ICON only achieved a modest 12x speed-up, and the other workshop codes in between.

Introduction 5

dynQCD
JuSPIC

KKRnano
PMG+PFASST

PP-Code

16k 32k 64k 128k 256k 448k
 1

 2

 4

 8

 16

 32

 64

sp
e
e
d

-u
p

1 2 4 8 16 28
cores
racks

CoreNeuron
MPAS-A

ICON
psOpen
SHOCK

ideal

Figure 3: Strong scaling results of the workshop codes with results from existing High-Q Club
members included in light grey.

IMD
Gysela

JURASSIC
MP2C

muPhi
OpenTBL

PEPC
TERRA-NEO

0.5

0.6

0.7

0.8

0.9

1.0

16k 32k 64k 128k 256k 448k

e
ffi

ci
e
n
cy

1 2 4 8 16 28
cores
racks

CoreNeuron
ex_nl/FE2

FEMPAR
SHOCK

ideal

Figure 4: Weak scaling results of the workshop codes with results from existing High-Q Club
members included in light grey.

6 JUQUEEN Extreme Scaling Workshop 2015

dynQCD stands out with superlinear speed-up of 52x, probably due to its exceptional ability
to exploit caches as problem size per thread decreases.

Even with its heroic dataset of over 65 million grid-points, MPAS-A suffered substantial per-
formance breakdown in strong scaling going from 24 to 28 racks due to growing communication
costs overwhelming diminishing per-rank computation. A similar breakdown was also found
with SHOCK when strong scaling with 64 MPI ranks per compute node (but not evident with
only 32 rpn). In both cases, larger datasets might avoid this breakdown.

In Figure 4 ex nl/FE2 is able to sustain weak scaling efficiency of 99% with 28 racks, whereas
for CoreNeuron efficiency drops to a still respectable 88%. muPhi was able to achieve 102%
efficiency on 28 racks compared with a single rack, whereas JURASSIC only managed 68%
efficiency due to excessive I/O for the reduced-size test case. Various codes show erratic scaling
performance, most likely due to topological effects. SHOCK is characterised by particularly
poor configurations with an odd number of racks in one dimension (i.e. 4×3, 4×5 and 4×7).
Similarly, OpenTBL shows marked efficiency drops for non-square numbers of racks (8 and 28).

Most optimisations employed by the codes are not specific to Blue Gene (or BG/Q) systems,
but can also be exploited on other highly-parallel systems. High-Q Club codes have also run
at scale on various Cray supercomputers, K computer, MareNostrum-3, SuperMUC and other
x86-based computers, as well as on systems with GPGPUs.

Custom mappings of MPI process ranks to JUQUEEN compute nodes generated by the
Rubik [13] tool were investigated with psOpen and found to deliver some benefits, however, for
the largest machine partitions these did not provide the expected reduction in communication
times yet suffered from increased application launch/initialisation time.

Detailed results for each code are found in the following chapters with reports provided by
each of the participating teams. These present and discuss more execution configurations and
scaling results achieved by the application codes during the workshop.

Managing I/O Another critical point attracting increasing attention is performance of file
I/O, which is often a scalability constraint for codes which need to read and write huge datasets
or open a large number of files. MPAS-A needed 20 minutes to load its initial condition data
of 1.2 TB using PIO/NetCDF — after taking the better part of a week to transfer this single
file from KIT (due to the source institution policy limiting outgoing transfer bandwidth) —
and simulation output was disabled for these tests to avoid similar writing inefficiency. Large-
scale executions of ICON, psOpen and SHOCK (and various High-Q member codes) using the
popular HDF5 and pNetCDF libraries needed to disable file I/O and synthesise initialisation
data, whereas CoreNeuron replicated a small dataset to fill memory to 15.9 GB.

SIONlib [9], which was developed to address file I/O scalability limitations, has been used
effectively by three High-Q codes (KKRnano, MP2C and muPhi) and several other applications
are currently migrating to adopt it (e.g., NEST).

Tools at scale Darshan [10] was engaged with SHOCK and various other codes to investigate
I/O performance on JUQUEEN and identify copious reads of small numbers of bytes, but
found not to work with applications written in C++ or Fortran. The Score-P instrumentation
and measurement infrastructure [11] employed by the latest release of Scalasca [12] was used to
profile file I/O performance of MPAS-A, however, only MPI call count and timing is currently
supported and not measurement of bytes read or written. While Score-P profiles have been
produced for applications with one million threads, the largest trace collection configuration
currently handled with OTF2 is approximately 655 360 threads (or processes). SIONlib needs
to be employed for such traces to avoid file creation limitations, however, excessive memory
requirements have so far prevented Scalasca automated parallel trace analysis of these.

Introduction 7

High-Q Club codes

The full description of the High-Q Club codes along with developer and contact information
can be found on the web page [8]. The current list has 17 codes, one of which is FEMPAR.
The others are:

dynQCD lattice quantum chromodynamics with dynamical fermions
JSC SimLab Nuclear and Particle Physics & Bergische Universität Wuppertal

Gysela gyrokinetic semi-Lagrangian code for plasma turbulence simulations
CEA-IRFM Cadarache

IMD classical molecular dynamics simulations
Ruhr-Universität Bochum & JSC SimLab Molecular Systems

JURASSIC solver for infrared radiative transfer in the Earth’s atmosphere
JSC SimLab Climate Science

JuSPIC fully relativistic particle-in-cell code for plasma physics and laser-plasma interaction
JSC SimLab Plasma Physics

KKRnano Korringa-Kohn-Rostoker Green function code for quantum description of nano-
materials in all-electron density-functional calculations
FZJ-IAS

MP2C massively-parallel multi-particle collision dynamics for soft matter physics and meso-
scopic hydrodynamics
JSC SimLab Molecular Systems

µφ (muPhi) modelling and simulation of water flow and solute transport in porous media,
algebraic multi-grid solver
Universität Heidelberg

Musubi multi-component Lattice Boltzmann solver for flow simulations
Universität Siegen

NEST large-scale simulations of biological neuronal networks
FZJ/INM-6 & IAS-6

OpenTBL direct numerical simulation of turbulent flows
Universidad Politécnica de Madrid

PEPC tree code for N -body simulations, beam-plasma interaction, vortex dynamics, gravita-
tional interaction, molecular dynamics simulations
JSC SimLab Plasma Physics

PMG+PFASST space-time parallel solver for systems of ODEs with linear stiff terms, e.g.
from lines discretisations of PDEs
LBNL, Universität Wuppertal, Università della Svizzera italiana & JSC

PP-Code simulations of relativistic and non-relativistic astrophysical plasmas
University of Copenhagen

TERRA-NEO modeling and simulation of earth mantle dynamics
Universität Erlangen-Nürnberg, LMU & TUM

waLBerla Lattice-Boltzmann method for the simulation of fluid scenarios
Universität Erlangen-Nürnberg

8 JUQUEEN Extreme Scaling Workshop 2015

References

[1] Bernd Mohr & Wolfgang Frings, Jülich Blue Gene/P Porting, Tuning & Scaling Workshop
2008, Innovatives Supercomputing in Deutschland, inSiDE 6(2), 2008.

[2] Bernd Mohr, Wolfgang Frings, Jülich Blue Gene/P Extreme Scaling Workshop 2009,
Technical Report FZJ-JSC-IB-2010-02, Forschungszentrum Jülich, Feb. 2010.
http://juser.fz-juelich.de/record/8924

[3] Bernd Mohr, Wolfgang Frings, Jülich Blue Gene/P Extreme Scaling Workshop 2010,
Technical Report FZJ-JSC-IB-2010-03, Forschungszentrum Jülich, May 2010.
http://juser.fz-juelich.de/record/9600

[4] Bernd Mohr, Wolfgang Frings, Jülich Blue Gene/P Extreme Scaling Workshop 2011,
Technical Report FZJ-JSC-IB-2011-02, Forschungszentrum Jülich, Apr. 2011.
http://juser.fz-juelich.de/record/15866

[5] Helmut Satzger et al, Extreme Scaling of Real World Applications to >130,000 Cores on
SuperMUC, Poster, Int’l Conf. for High Performance Computing, Networking, Storage
and Analysis (SC13, Denver, CO, USA), Nov. 2013.

[6] Ferdinand Jamitzky, Helmut Satzger, 2nd Extreme Scaling Workshop on SuperMUC,
Innovatives Supercomputing in Deutschland, inSiDE 12(2), 2014.

[7] JUQUEEN – Jülich Blue Gene/Q, Jülich Supercomputing Centre.
http://www.fz-juelich.de/ias/jsc/juqueen/

[8] The High-Q Club at JSC. http://www.fz-juelich.de/ias/jsc/high-q-club

[9] SIONlib: Scalable I/O library for parallel access to task-local files.
http://www.fz-juelich.de/jsc/sionlib

[10] Darshan: HPC I/O characterisation tool, Argonne National Laboratory.
http://www.mcs.anl.gov/research/projects/darshan/

[11] Score-P: Community-developed scalable instrumentation and measurement infrastructure.
http://www.score-p.org/

[12] Scalasca: Toolset for scalable performance analysis of large-scale parallel applications.
http://www.scalasca.org/

[13] Rubik tool for generating structured Cartesian communication mappings, Lawrence
Livermore National Laboratory. https://computation.llnl.gov/project/

performance-analysis-through-visualization/software.php

http://juser.fz-juelich.de/record/8924
http://juser.fz-juelich.de/record/9600
http://juser.fz-juelich.de/record/15866
http://www.fz-juelich.de/ias/jsc/juqueen/
http://www.fz-juelich.de/ias/jsc/high-q-club
http://www.fz-juelich.de/jsc/sionlib
http://www.mcs.anl.gov/research/projects/darshan/
http://www.score-p.org/
http://www.scalasca.org/
https://computation.llnl.gov/project/performance-analysis-through-visualization/software.php
https://computation.llnl.gov/project/performance-analysis-through-visualization/software.php

CoreNeuron, the Blue Brain Project

Fabien Delalondre1, Pramod Kumbhar1, Aleksandr Ovcharenko1,
and Michael Hines2

1Blue Brain Project, EPFL
2Yale University

CoreNeuron Description

The aim of the Extreme Scaling Workshop for the HPC team of the Blue Brain Project, in
collaboration with Michael Hines from Yale University, was to execute an electrical simulation
of a neuronal network using the CoreNeuron simulator utilising the full JUQUEEN system,
analyse the code performance and address any possible issues arising from operating at such
an extreme scale.

CoreNeuron supports a reduced set of the functionalities offered by the open source sim-
ulator NEURON [1]. The software aims at supporting an efficient and scalable simulation
of the electrical activity of neuronal networks that include morphologically detailed neurons.
CoreNeuron has been implemented with the goal of minimising memory footprint and obtain-
ing optimal performance, relying on the use of a single MPI process per node and 64 OpenMP
threads on IBM Blue Gene/Q systems. The computational workflow of CoreNeuron includes
various computation and communication steps that are presented in Figure 1.

CoreNeuron is written in C/C++ and utilises a hybrid (MPI + OpenMP) parallelisation.
The initial circuit utilised for testing contained 3 million neurons. Its visual representation
of the neural network being simulated on a single rack of IBM Blue Gene/Q can be found in
Figure 2. In order to extend the problem to larger scales, the circuit is replicated in memory
by some factor, both for cells and connections, allowing us to conduct scaling studies and
still remain within the memory bounds. During the workshop, the data was read from disk
in either a “file-per-process” or “file-per-thread” manner. Replication was then performed
“in-memory”, whereupon all threads would then receive roughly the same amount of compute
work. The total I/O size for 28 racks was 28 TB, comprising data in both binary and ASCII
formats. Without in-memory replication, the I/O demands for the 24 million neuron circuit
would scale linearly, totalling 224 TB. The developers are now in a process of transitioning to
a more optimised parallel I/O implementation based on the HDF5 library [2].

Results

As described above, the simulator was configured to run with 1 MPI rank per node with 64
OpenMP threads. Strong scaling results were obtained by running tests on 4, 8, 16, 20, 24,
and 28 racks, where the size of the problem remained the same across all runs and consisted of
simulating 24 million morphologically detailed neurons for 10 milliseconds of biological time.
Weak scaling results were obtained by executing tests on 4, 8, 16, 20, 24, and 28 racks, where
the problem size was the same per node, i.e. 2 906 neurons per node, or roughly 45 neurons

9

10 JUQUEEN Extreme Scaling Workshop 2015

Task-based representation of the minimum delay loop
in a hybrid clock-event driven implementation of a compartmental model.

event driven
spike delivery

channel current
synapse current

capacitive current
diffusive current

linear
algebra

resolution

channel states
channel rates

synapse states

threshold
detection

foreach mechanism

foreach compartment

foreach compartment

foreach mechanism

foreach soma

foreach spike

repeat δmin
∆t

times

spike exchange

t0

t0 + ∆t
2

t0 + ∆t
2

t0 + ∆t
2

t0 + ∆t

t0 + ∆t

t0 + δmin

Figure 1: CoreNeuron workflow.

per thread, while simulating 10 milliseconds of biological time. In the weak scaling tests, the
replication factor was the same as the number of racks employed in the simulation.

The strong scaling results shown in Table 1, Figure 3 and Figure 4 indicate that while
simulation time decreases with the increased number of racks, MPI communication time
(MPI Allgather and MPI Allgatherv) increased when using 20 or more racks, which is re-
flected in the overall simulation time. The load imbalance starts to increase after 16 racks due
to the fact that the problem at hand was not exactly divisible by the number of threads being
used beyond 16 racks, essentially creating an unbalanced problem. The simulation data avail-
able at the time of the workshop had been arranged so as to be distributable across a power
of two number of racks, and consequently it was not able to be uniformly distributed across
20, 24 and 28 racks. The authors strongly believe that such an issue will disappear when the
next implementation of parallel I/O and corresponding static load balancing functionalities
which are under development will be fully in place. It is then worthwhile to analyse the strong
scaling data up to 16 racks, the largest number of racks usable without the load imbalance
issue arising from the misconfiguration of the problem setup. Up to 16 racks, we see that the

CoreNeuron 11

Figure 2: Simulation of 3 million neurons on a single IBM Blue Gene/Q rack. On the left is
the front view of a single column from the circuit, together with its spike activity.
On the right is a top-side view of the full 3 million circuit, displaying the somas with
a membrane voltage above a certain threshold.

Table 1: CoreNeuron strong scaling tests.

racks neurons/node DRAM [GB] simulation [s] MPI [s] setup [s] total [hours]

4 5 813 14.2 412.121 0.441 193.250 7 503
8 2 907 7.94 219.528 0.572 136.569 7 993

16 1 454 4.13 112.281 0.695 81.143 8 177
20 1 090 3.16 91.800 4.749 68.223 8 356
24 909 2.69 89.070 5.748 62.431 9 729
28 818 2.45 85.250 5.985 62.575 10 864

code loses about 10% of strong scaling efficiency and the authors are currently investigating
which part of the workflow is responsible for the loss.

The weak scaling results presented in Table 2, Figure 5 and Figure 6 show that the parallel
efficiency remains nearly optimal up to 20 racks, and the time needed to complete the simu-
lation is roughly the same. As described earlier, owing to the configuration of our input data
available during the workshop, the load imbalance issue presents itself in results of the weak
scaling runs on 24 and 28 racks. As the problem is distributed across more compute nodes,
the spike exchange processing increases for each MPI task and thus affects the weak scaling
behaviour.

Table 2: CoreNeuron weak scaling tests.

racks total neurons DRAM [GB] simulation [s] MPI [s] setup [s] total [hours]

4 11 904 000 7.94 214.951 0.291 219.327 3 914
8 23 808 000 7.94 219.528 0.572 136.569 7 993

16 47 616 000 7.93 221.276 1.003 89.010 16 113
20 55 800 000 7.43 219.318 14.462 85.223 19 963
24 66 960 000 7.43 235.333 22.255 71.386 25 705
28 82 024 264 7.80 250.025 29.268 50.490 31 861

12 JUQUEEN Extreme Scaling Workshop 2015

Figure 3: CoreNeuron simulation time for the strong scaling experiments.

Figure 4: CoreNeuron parallel efficiency for the strong scaling experiments.

CoreNeuron 13

Figure 5: CoreNeuron simulation time for the weak scaling experiments.

Figure 6: CoreNeuron parallel efficiency for the weak scaling experiments.

14 JUQUEEN Extreme Scaling Workshop 2015

To examine scaling behaviour at the limit of available memory, and to see how many neurons
could be simulated on the full JUQUEEN BG/Q, a simulation was run with a total of 155
million neurons, utilising a maximum of 15.9 GB of DRAM. The simulation took 491 seconds,
1.96 times longer than the 82 million neuron simulation.

In order to improve the on-node performance of the simulator, the developers of CoreNeuron
have been working on transforming the representation of data in memory from an arrays-of-
structures (AoS) layout to structures-of-arrays (SoA). Even with an SoA memory layout and
corresponding transformation of the compute kernels the XL C compiler is not able to vectorise
most of the kernels (note that these kernels are vectorised by Intel and PGI compilers).

Most of the compute kernels have the following form:

#pragma ibm independent_loop

for (i = 0; i < cntml; i++)

{

p_2[i] = p_5[i] * p_3[i] * p_3[i] * p_3[i] * p_4[i];

p_1[i] = p_2[i] * (p_3[i] - p_5[i]);

}

Though the iteration of loops are independent and have only simple arithmetic, the loops
are non-vectorisable on BG/Q (note the forward dependency of p 2 in the above loop). This
problem has been discussed with the XL C developers. The XL C compiler could not vectorise
the kernels because of a limitation in the vector loads and stores on BG/Q hardware. The XL
compiler has to perform a specialised procedure in which each store and load must be broken
up into a lower part, an upper part, and then merged together. Due to this process, forward
dependencies with distance zero like the ones shown above present a data hazard. The XL
C developers have suggested that a manual distribution of compute loops could break these
dependencies. Considering the large number of auto-generated kernels from the NEURON
mechanism DSL, it appears infeasible to manually transform these loops. The authors are
investigating other options.

References

[1] http://www.neuron.yale.edu/neuron/

[2] http://www.hdfgroup.org/HDF5/

http://www.neuron.yale.edu/neuron/
http://www.hdfgroup.org/HDF5/

EXASTEEL - Computational Scale Bridging

using a FE2TI approach with ex nl/FE2

A. Klawonn1, M. Lanser1, and O. Rheinbach2

1Universität zu Köln
2Technische Universität Bergakademie Freiberg

Description of the Code

We are concerned with the computational simulation of advanced high strength steels, in-
corporating phase transformation phenomena at the microscale. Our research project “EX-
ASTEEL – Bridging Scales for Multiphase Steels” is part of the German priority program
(DFG-Schwerpunktprogramm 1648) SPPEXA (Software for Exascale Computing) and a joint
effort of mathematicians (A. Klawonn, M. Lanser, U Cologne; O. Rheinbach, TU Freiberg),
engineers (J. Schröder, U Duisburg-Essen; D. Balzani, TU Dresden), and computer scientists
(G. Wellein, U Erlangen-Nürnberg). Our present goal is to bring computational scale bridging
to the complete JUQUEEN machine (458 752 BG/Q cores).

The FE2 method, see, e.g., [1–5], is a computational micro-macro scale bridging approach
directly incorporating micromechanics in macroscopic simulations. In this approach, a mi-
croscopic boundary value problem based on the definition of a representative volume element
(RVE) is solved at each macroscopic Gauß integration point. Then, volumetric averages of

Figure 1: In the FE2 computational scale bridging method, in each macroscopic Gauß point a
microscopic problem is solved.

15

16 JUQUEEN Extreme Scaling Workshop 2015

Figure 2: The FE2 approach with (a) macroscopic boundary value problem (BVP) and (b)
microscopic BVP on an RVE.

microscopic stress distributions are returned to the macroscopic level, which replaces a phe-
nomenological material law at the macro scale. The microscopic problems are thus coupled
through the macroscopic problem; see Figures 1, 2, and 3.

On the RVEs nonlinear implicit structural mechanics problems have to be solved. We are
applying the FETI-DP (Finite Element Tearing and Interconnecting) method as a solver on
the RVEs. Nonoverlapping domain decomposition methods of the FETI type [6–15] are well
established solution methods in implicit structural mechanics. A structural simulation using
a FETI-DP algorithm was awarded an ACM Gordon Bell prize already in 2002 using 4000
processors of the then second fastest supercomputer of the world. Unfortunately, the classical
FETI-DP method does not scale well beyond 10K processor cores. Inexact FETI-DP meth-
ods [16], have shown a much better parallel scalability, and scalability for 65K cores was shown
during the 2008 JUGENE scaling workshop in Jülich [13, 17]. Recently, nonlinear FETI-DP
and BDDC methods [18–20] with improved concurrency were introduced. In these methods,
the nonlinear problem is decomposed into concurrent subproblems before linearisation. This
is opposed to standard Newton-Krylov approaches where the problem is first linearised and
then decomposed.

Hybrid parallelisation in our context was discussed in [21]. Nonlinear non-overlapping
domain decomposition is not new. It was used, e.g., in multiphysics and fluid-structure-
interaction, as a coupling method in the case of a small number of subdomains. Only recently,
it has attracted interest as a scalable solver approach [18–20,22,23]. The ASPIN method [24]
is a related nonlinear overlapping domain decomposition approach as a solver.

We refer to the combination of the FE2 scale bridging method with a FETI-DP method
on each RVE as a FE2TI method. For our FE2 method, as a solver on the RVEs, we use a
Newton-Krylov-irFETI-DP method using PETSc 3.5.2, hypre 2.9.1a, and UMFPACK 5.6.2 as
a direct solver on the subdomains. Our code is written mainly in C/C++. We have used the
IBM XL C/C++ compiler for Blue Gene, V12.1.

ex nl/FE2 17

Repeat until convergence:

1. Apply boundary conditions to RVE based on macroscopic deformation gradient:
Enforce x = FX on the boundary of the microscopic problem ∂B.

2. Solve microscopic nonlinear boundary value problem using (ir)FETI-DP or related
methods.

3. Compute and return macroscopic stresses as volumetric average over microscopic
stresses P , i.e., P = 1

V

∫
B P dV .

4. Compute and return macroscopic tangent moduli as average over microscopic tan-
gent moduli A, i.e., A = ∂

∂F
(1
V

∫
B P dV).

5. Set up tangent matrix and rhs of linearised macroscopic boundary value problem
using P and A.

6. Solve linearised macroscopic boundary value problem.

7. Update macroscopic deformation gradient F .

Figure 3: Algorithmic description of the FE2TI approach. Overlined letters denote macro-
scopic quantities.

Results

We present our scaling results for the computational scale bridging using the FE2 method in
2D and 3D. For the first time, scalability to 458 752 cores is achieved for our approach. We
first scale up the size of the macroscopic problem while keeping the size of the microscopic
RVEs fixed. We also keep the number of FETI-DP subdomains for each RVE fixed and use
one MPI rank per FETI-DP subdomain. As we increase the number of processor cores in
proportion to the problem size (weak scalability), in the best case, for a parallel efficiency of
100%, we would expect a constant time to solution.

In Tables 1 and 2, we see the weak scalability for 2D and 3D; we use one MPI rank for
each BG/Q processor core and OpenMP multithreading with 4 threads. The base line for our
parallel efficiency is the smallest meaningful macroscopic problem, i.e., with 8 Gauß points
in 2D and 16 Gauß points in 3D. A parallel efficiency of approximately 98% is achieved in
Tables 1 and 2. In Figures 4 and 5 the data from the tables is depicted.

In our implementation, we use MPI Comm split to create subcommunicators for the com-
putations on the RVEs. As suggested at the workshop, we used the environment variable
PAMID COLLECTIVES MEMORY OPTIMIZED=1 to keep the time for the communicator split short.
In our computations the resulting timings for the communicator split was below 2 seconds.

In Tables 1 and 2, the number of subdomains for each RVE, i.e., 256 in 2D and 512 in 3D,
is still small. In Table 3, starting from the largest problem in Table 1, the size of the RVEs is
increased by a factor of 4.

Next, we disable threading and consider the effect of an overcommit using pure MPI. In
Table 4, we show weak scaling but using an overcommit with up to 4 MPI ranks for each
BG/Q processor core. In the latter case, only 256 MB are available for each MPI rank. We
use 16, 32, and 64 MPI ranks per node and the RVE size is kept constant, i.e., the total
problem size is increased by a factor of 4. We, of course, cannot expect perfect scalability
in this situation. But we still see, that acceptable scalability is obtained when scaling from
a total of 458 752 MPI ranks to 917 504 MPI ranks, i.e., the total time to solution is 266.47s
instead of 2 · 215.41s= 430.82s. Using 1 835 008 MPI ranks only results in small additional
savings.

18 JUQUEEN Extreme Scaling Workshop 2015

Figure 4: Weak scalability for FE2 in 2D using FETI-DP on each RVE. Data from Table 1.

Figure 5: Weak scalability for FE2 in 3D using FETI-DP on each RVE. Data from Table 2.

The scaling runs presented here are for heterogeneous nonlinear hyperelasticity. In our ap-
plication, we are also interested in plastification on the RVEs. We will perform corrresponding
numerical experiments in the near future.

Although our focus in this scaling workshop was on scale bridging, we also took the oppor-
tunity to work on the scalability of a recent implementation of one of our nonlinear FETI-DP
methods, which is still work in progress. Here a memory problem was observed for a large
number of MPI ranks. Therefore, when scaling from a single BG/Q compute node to 28 672
nodes the total time for a Newton step in phase 2 of the algorithm increased from 3.28s (1
node), 4.21s (16 nodes), 5.31s (256 nodes), 6.98s (4096 nodes) to 15.28s (28 672 nodes). As a
result of this workshop, we will analyse the responsible software subpackage and our use of it
in detail.

The workshop is valuable to bring together people from different fields with common interest
in computing, which would otherwise not meet in person. Especially for young researchers,
awareness for the hardware and software ecosystems in HPC on the Tier-0/1 level is created.
The workshop encourages and facilitates the use of tools which can in return radically improve
productivity. It also allows to work exclusively and cooperatively on the implementation and
numerical experiments for a few days.

ex nl/FE2 19

Table 1: Scaling up the macro problem: FE2 in 2D using FETI-DP on each RVE; heteroge-
neous hyperelasticity; P1 finite elements macro, P2 finite elements micro; 5.1 million
d.o.f. on each RVE; 256 subdomains for each RVE.

FE2 in 2D (Weak scaling)

bg size MPI-ranks #RVEs Time to Solution

128 2 048 8 158.47s 100.0%
256 4 096 16 159.03s 99.6%
512 8 192 32 159.27s 99.5%

1 024 16 384 64 159.32s 99.5%
2 048 32 768 128 159.58s 99.3%
4 096 65 536 256 159.68s 99.2%
8 192 131 072 512 159.99s 99.1%
16 384 262 144 1 024 160.62s 98.7%
24 576 393 216 1 536 161.41s 98.2%
28 672 458 752 1 792 161.78s 98.0%

Table 2: FE2 in 3D using FETI-DP on each RVE; heterogeneous hyperelasticity; Q1 finite
elements macro, P2 finite elements micro; 1.6 million d.o.f. on each RVE; 512 subdo-
mains for each RVE.

FE2 in 3D

bg size MPI-ranks #RVEs Time to Solution

512 8 192 16 184.86s 100.0%
1 024 16 384 32 185.09s 99.9%
2 048 32 768 64 185.61s 99.6%
4 096 65 536 128 185.72s 99.5%
8 192 131 072 256 186.43s 99.2%
16 384 262 144 512 186.61s 99.1%
24 576 393 216 768 187.32s 98.7%
28 672 458 752 896 187.65s 98.5%

Table 3: We increase the RVE sizes starting from the largest problem in Table 1; heterogeneous
hyperelasticity; P1 finite elements macro, P2 finite elements micro.

FE2 in 2D (Increasing RVE sizes)

bg size MPI-ranks #RVEs RVE-size RVE-size × #RVEs Time to
Solution

28 672 458 752 1 792 5 126 402 9 186 512 384 161.78s
28 672 458 752 1 792 7 380 482 13 225 823 744 248.19s
28 672 458 752 1 792 13 117 442 23 506 456 064 483.68s
28 672 458 752 1 792 20 492 802 36 723 101 184 817.06s

Table 4: Weak scaling efficiency using 16 / 32 / 64 MPI ranks per compute node. FE2 in 3D
using FETI-DP on each RVE. Here, due to the memory constraints, we use 1 594 323
d.o.f. per RVE and 512 subdomains per RVE.

FE2 in 3D (1x, 2x, 4x MPI overcommit)

bg size ranks per node MPI-ranks #RVEs Time to Solution

28 672 16 458 752 896 215.41s 100%
28 672 32 917 504 1 792 266.47s 81%
28 672 64 1 835 008 3 584 522.10s 41%

20 JUQUEEN Extreme Scaling Workshop 2015

Acknowledgements

This work was supported by the German Research Foundation (DFG) through the Prior-
ity Programme 1648 “Software for Exascale Computing” (SPPEXA) under KL2094/4-1, RH
122/2-1. The authors gratefully acknowledge the use of JUQUEEN during the Workshop on
“Extreme Scaling on JUQUEEN” (Jülich, 05.02.2015 - 06.02.2015).

References

[1] R.J.M. Smit, W.A.M. Brekelmans, and H.E.H. Meijer. Prediction of the mechanical be-
havior of nonlinear heterogeneous systems by multi-level finite element modeling. Com-
puter Methods in Applied Mechanics and Engineering, 155:181–192, 1998.

[2] C. Miehe, J. Schröder, and J. Schotte. Computational homogenization analysis in fi-
nite plasticity. Simulation of texture development in polycrystalline materials. Computer
Methods in Applied Mechanics and Engineering, 171:387–418, 1999.

[3] J. Schröder. Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter
Beachtung von Stabilitätsproblemen. PhD thesis, Bericht aus der Forschungsreihe des
Institut für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart, 2000. Habilitation-
sschrift.

[4] V. Kouznetsova, W.A.M. Brekelmans, and F.P.T. Baaijens. An approach to micro-macro
modeling of heterogeneous materials. Computat. Mechanics, 27:37–48, 2001.

[5] F. Feyel. Multiscale FE2 elastoviscoplastic analysis of composite structures. Computa-
tional Materials Science, 16:344–354, 1999.

[6] Charbel Farhat, Jan Mandel, and Francois-Xavier Roux. Optimal convergence proper-
ties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Engrg.,
115:367–388, 1994.

[7] Charbel Farhat and Jan Mandel. The two-level FETI method for static and dynamic
plate problems – Part I: an optimal iterative solver for biharmonic systems. Computer
Methods in Applied Mechanics and Engineering, 155:129–152, 1998.

[8] Manoj Bhardwaj, David Day, Charbel Farhat, Michel Lesoinne, Kendall Pierson, and
Daniel Rixen. Application of the FETI method to ASCI problems – scalability results on
one thousand processors and discussion of highly heterogeneous problems. Int. J. Numer.
Meth. Engrg., 47:513–535, 2000.

[9] Charbel Farhat, Kendall Pierson, and Michel Lesoinne. The second generation of FETI
methods and their application to the parallel solution of large-scale linear and geomet-
rically nonlinear structural analysis problems. Computer Methods in Applied Mechanics
and Engineering, 184:333–374, 2000.

[10] Axel Klawonn and Olof B. Widlund. FETI and Neumann-Neumann iterative substruc-
turing methods: connections and new results. Communications on Pure and Applied
Mathematics, LIV:57–90, 2001.

[11] Charbel Farhat, Michel Lesoinne, and Kendall Pierson. A scalable dual-primal domain
decomposition method. Numer. Lin. Alg. Appl., 7:687–714, 2000.

ex nl/FE2 21

[12] Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and Daniel Rixen.
FETI-DP: A dual-primal unified FETI method – Part I: A faster alternative to the two-
level FETI method. Int. J. Numer. Meth. Engrg., 50:1523–1544, 2001.

[13] Axel Klawonn and Oliver Rheinbach. Highly scalable parallel domain decomposition
methods with an application to biomechanics. ZAMM Z. Angew. Math. Mech., 90(1):5–
32, 2010.

[14] Axel Klawonn and Olof B. Widlund. Dual-Primal FETI Methods for Linear Elasticity.
Comm. Pure Appl. Math., 59(11):1523–1572, 2006.

[15] Axel Klawonn and Oliver Rheinbach. Robust FETI-DP methods for heterogeneous three
dimensional elasticity problems. Comput. Methods Appl. Mech. Engrg., 196(8):1400–1414,
2007.

[16] Axel Klawonn and Oliver Rheinbach. Inexact FETI-DP methods. Internat. J. Numer.
Methods Engrg., 69(2):284–307, 2007.

[17] Oliver Rheinbach. Parallel iterative substructuring in structural mechanics. Arch. Com-
put. Methods Eng., 16(4):425–463, 2009.

[18] Axel Klawonn, Martin Lanser, Patrick Radtke, and Oliver Rheinbach. On an adaptive
coarse space and on nonlinear domain decomposition. Domain Decomposition Methods in
Science and Engineering XXI, volume 98 of Lect. Notes Comput. Sci. Eng., pages 71–83.
2014. http://dd21.inria.fr/pdf/klawonna_plenary_3.pdf.

[19] Axel Klawonn, Martin Lanser, and Oliver Rheinbach. Nonlinear FETI-DP and
BDDC methods. SIAM J. Sci. Comput., 36(2):A737–A765, 2014. http://www.mathe.

tu-freiberg.de/files/personal/253/rheinbach-nonlinear.pdf.

[20] Axel Klawonn, Martin Lanser, and Oliver Rheinbach. A nonlinear FETI-DP method
with an inexact coarse problem. 2014. In Proceedings of the 22nd International Confer-
ence on Domain Decomposition Methods. Preprint: http://www.mathe.tu-freiberg.

de/files/personal/253/rheinbach-plenarytalk-dd22.pdf.

[21] Axel Klawonn, Martin Lanser, Oliver Rheinbach, Holger Stengel, and Gerhard Wellein.
Hybrid MPI/OpenMP parallelization in FETI-DP methods. Technical Report 2015-02,
Fakultät für Mathematik und Informatik, Technische Universität Bergakademie Freiberg,
2015. Accepted for publication in Springer Lect. Notes Comput. Sci. Eng., http://

tu-freiberg.de/fakult1/forschung/preprints.

[22] Julien Pebrel, Christian Rey, and Pierre Gosselet. A nonlinear dual-domain decomposition
method: Application to structural problems with damage. Inter. J. Multiscale Comp.
Eng., 6(3):251–262, 2008.

[23] Felipe Bordeu, Pierre-Alain Boucard, and Pierre Gosselet. Balancing domain decomposi-
tion with nonlinear relocalization: Parallel implementation for laminates. In Proceedings
of the First International Conference on Parallel, Distributed and Grid Computing for
Engineering, Civil-Comp Press, 2009.

[24] Xiao-Chuan Cai and David E. Keyes. Nonlinearly preconditioned inexact Newton algo-
rithms. SIAM J. Sci. Comput., 24(1):183–200 (electronic), 2002.

http://dd21.inria.fr/pdf/klawonna_plenary_3.pdf
http://www.mathe.tu-freiberg.de/files/personal/253/rheinbach-nonlinear.pdf
http://www.mathe.tu-freiberg.de/files/personal/253/rheinbach-nonlinear.pdf
http://www.mathe.tu-freiberg.de/files/personal/253/rheinbach-plenarytalk-dd22.pdf
http://www.mathe.tu-freiberg.de/files/personal/253/rheinbach-plenarytalk-dd22.pdf
http://tu-freiberg.de/fakult1/forschung/preprints
http://tu-freiberg.de/fakult1/forschung/preprints

FEMPAR: Scaling Multi-Level Domain Decomposition

up to the full JUQUEEN supercomputer

Santiago Badia, Alberto F. Mart́ın, and Javier Principe

Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE),

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Description of the Code

FEMPAR [1], developed by the members of the LSSC team at CIMNE, is a parallel hybrid
OpenMP/MPI, object-oriented framework for the massively parallel Finite Element (FE) sim-
ulation of multiphysics problems governed by PDEs. It provides tools for the numerical simu-
lation of a wide range of different physical phenomena, including compressible/incompressible
flows, magnetics, solid mechanics, fluid-structure interaction, or thermal coupling. FEMPAR
has been designed to tackle multiphysics, nonlinear, and multiscale problems. For such prob-
lems, it makes use of scalable implicit massively parallel solvers that are based on Balancing
Domain Decomposition by Constraints (BDDC) preconditioning ideas [2, 3], combined with
fully-coupled block LU preconditioning [4].

In particular, within the domain decomposition kernel, FEMPAR provides a novel, fully-
distributed, communicator-aware, recursive, and inter-level overlapped implementation of the
MultiLevel BDDC (MLBDDC) preconditioner [5]. Figure 1 depicts the global structure of com-
putation and communication underlying this kernel. This code weakly scales up to 458,752
JUQUEEN cores for coercive three-dimensional problems (the Laplacian and Linear Elasticity
problems). The largest problem solved with FEMPAR up to now involved 30 billion un-
knowns. FEMPAR is released under the GNU GPL v3 license, and is more than 200K lines
of Fortran95/2003/2008 code long.

As an application example, Figure 2 illustrates the vorticity isosurfaces for the incompressible
Taylor-Green vortex problem at Re = 1600 at four different time steps, starting with the
initial condition at the top-left corner and evolving in time from top to bottom, and left
to right. These simulation results were obtained with FEMPAR by means of a segregated
velocity/pressure algorithm, that involves a pressure Poisson MLBDDC solver per time step.

Results

Before the workshop, we could already scale the MLBDDC solver up to the full JUQUEEN
supercomputer. In particular, a 3-level BDDC preconditioner, supplied either with corner
and edges, or corner, edge and face constraints, was successfully applied to the Laplacian and
Linear elasticity discrete problems with excellent weak scalability results. These experiments
were performed with 16 MPI tasks/node, and 1 OpenMP thread/MPI task, so that we were
not actually taking any profit from the hardware threads of the IBM PowerPC A2 cores. Given
such limitation, the main goal during the workshop was to explore approaches that enable the
exploitation of hardware multi-threading.

23

24 JUQUEEN Extreme Scaling Workshop 2015

.....

co
re

 1

co
re

 2

co
re

 3

co
re

 4

co
re

 P 1

1st level MPI comm

.....

.....

co
re

 1

co
re

 2

co
re

 P 2

2nd level MPI comm

.....

3rd level
MPI comm

co
re

 1

parallel (distributed) global communication

global communication

.....

time

Figure 1: Computation and communication structure of the fully-distributed, communicator-
aware, recursive, and inter-level overlapped implementation of the MLBDDC pre-
conditioner.

Although FEMPAR supports hybrid MPI/OpenMP execution, it (currently) only exploits
OpenMP for some phases during the computation. In particular, in the solution of local Dirich-
let/Neumann problems (at each intermediate level), and in the solution of the coarsest-grid
problem. For the solution of such problems on JUQUEEN, FEMPAR relies on HSL MA87 [6],
a numerical library for the multi-threaded sparse direct solution of SPD linear systems. Al-
though for “large” load per core these kernels consume the bulk of the computation, there is
intrinsically a serial bottleneck for increasing number of threads due to the parts which are not
parallelised. On the other hand, arithmetic complexity of sparse direct methods is well known
to grow as O(n2) for 3D problems, with n being the size of the coefficient matrix. These two
factors render slower (for same global problem size) those hybrid configurations which use less
MPI tasks than physical cores (and more OpenMP threads).

Given such scenario, we have two possible (efficient) approaches for the exploitation of hard-
ware threads. On the one hand, a hybrid MPI/OpenMP approach with 16 MPI tasks/node,
and 2/4 threads/MPI task (core). On the other hand, a pure MPI approach with 32 or 64 MPI
tasks/node. The first approach, although convenient, could not be explored during the work-
shop, due to a memory related issue that is still under investigation with the help of JSC staff.
In particular, heap and mmap system memory consumed by HSL MA87 with 2/4 OpenMP
threads significantly increases with respect to the 1 thread case. Besides, this increase is not
reproducible, and may become “large” depending on how the tasks performed by the threads
are scheduled/synchronised by the underlying software/hardware stack. This prevents the
code from solving problems with a load close to the 1 GB/core limit, precisely those loads for
which we expect the largest performance benefit from the exploitation of hardware threads via

FEMPAR 25

Figure 2: Vorticity isosurfaces for the incompressible Taylor-Green vortex problem at Re =
1600.

OpenMP.

In light of these memory issues, we decided to put on hold the hybrid MPI/OpenMP ap-
proach, focusing ourselves on the pure MPI approach. Although we also performed experiments
with 32 MPI tasks/node, the results with 64 MPI tasks/node confirm a higher profit from the
hardware threads in terms of aggregated efficiency. The usage of 64 MPI tasks/node implies
a very moderate amount of memory of 256 MB/MPI task, and a 4-fold increase in the coarse-
grid problem size to be solved at each level of the hierarchy. In order to cope with a smaller
load per core, and larger coarse-grid problems, we decided to add an additional level in the
preconditioning hierarchy, and study a 4-level BDDC preconditioner. In particular, Table 1
reports the configuration of the experiment that we performed with 64 MPI tasks/node, with
the number of MPI tasks (subdomains) at each level, and the loads per MPI task (subdomain)
tested. We applied this algorithm to the Laplacian problem discretised with Q1 FEs, and
studied the weak scalability of the code on JUQUEEN with the BDDC space supplied with
either corner and edge (ce), or corner, edge, and face (cef) constraints, for 3 different loads
per core on the first level. To keep the presentation simpler, we will focus on the results that
we obtained with the 4-level MLBDDC(cef) solver, with the largest load of 253 FEs/core.

A first bottleneck that we had to face was related to the initialisation stage of the code. In
such stage, the MPI tasks in the global communicator are split into two disjoint subcommuni-
cators via a call to MPI Comm split. One of these two includes the MPI tasks in the first level
of the hierarchy, while the other one those which belong to the rest of levels (2nd, 3rd, and 4th
in Table 1). With default settings, MPI Comm split was scaling as O(P 2), with P being the
number of MPI tasks in the global communicator. The workaround recommended by JSC staff
was to activate the PAMID COLLECTIVES MEMORY OPTIMIZED environment variable. This set-up

26 JUQUEEN Extreme Scaling Workshop 2015

Table 1: Configuration of the 4-level BDDC preconditioner for the FEMPAR experiments with
64 MPI tasks/node performed during the workshop.

Level # MPI tasks FEs/core

1st 592.7K 884.7K 1.26M 1.73M 103/203/253

2nd 9.26K 13.8K 19.7K 64K 43

3rd 343 512 729 1K 33

4th 1 1 1 1 n/a

615K 918K 1280K 1795K

switches to a different algorithm within the underlying message-passing stack. As shown in
Table 2, it also has a tremendous positive impact on performance/scalability, at the price of a
moderate increase in memory consumption.

Table 2: Performance/scalability of MPI Comm split and average memory/1st level MPI task
consumed by the 4-level BDDC(cef) solver, with the largest load of 253 FEs/core,
once the preconditioner is set-up.

Default settings PAMID ... OPTIMIZED

bg size P Time (sec.) Mem. (MB) Time (sec.) Mem. (MB)

9609 615K n/a 115.3 2.46 127.8
14344 918K n/a 122.5 3.92 143.3
20002 1280K 365 131.7 5.74 163.2
28047 1795K 862 n/a 8.09 187.8

Once the bottleneck related to MPI Comm split was overcome, we proceeded with the actual
weak scalability test. Table 3 reports the number of PCG solver iterations and total computa-
tion time in seconds for the 4-level BDDC(cef) solver, when applied to the discrete Laplacian
problem using 64 MPI tasks/node, and the largest load of 253 FEs/core. Total computation
time includes both preconditioner set-up and the PCG phase. These results confirm remark-
able scalability for the approach that we pursue for the extreme scale implementation of the
MLBDDC preconditioner. In particular, with a 4-level BDDC(cef) preconditioner, we were
already able to strike a balance such that computation/communication related to coarser-grid
levels in the hierarchy (i.e., 2nd, 3rd and 4th in Table 1) are completely absorbed (i.e., masked)
by the finest-grid level duties (i.e., 1st level in Table 1) due to the effect of inter-level over-
lapping (see Figure 1). Besides, on smaller scale test cases, we compared the computation
times of the codes using 16 and 64 MPI tasks/node (with the same number of MPI tasks/level
in both cases), confirming an approximately 50% saving in aggregated efficiency by the ex-
ploitation of hardware multi-threading (i.e., the computation time with 64 MPI tasks/node
was approximately twice as much as the one with 16 MPI tasks/node).

Finally, we would like to remark that we expect that the achievements resulting from our
participation in the workshop will have a high impact on the scientific computing community in
general, and in the development of fast parallel solvers tailored for FE analysis in particular [5].

FEMPAR 27

Table 3: Weak scalability for the FEMPAR 4-level BDDC(cef) solver with 64 MPI tasks/node
and the largest load of 253 FEs/core.

bg size P #PCG iterations Total time (sec.)

9609 615K 25 22.1
14344 918K 26 22.6
20002 1280K 27 22.9
28047 1795K 27 23.0

Acknowledgments

This work has been funded by the European Research Council under the FP7 Programme
Ideas through the Starting Grant No. 258443 – COMFUS: Computational Methods for Fusion
Technology. A. F. Mart́ın was also partially funded by the Generalitat de Catalunya under
the program “Ajuts per a la incorporació, amb caràcter temporal, de personal investigador
júnior a les universitats públiques del sistema universitari català PDJ 2013.” We acknowledge
GCS for awarding us access to resource JUQUEEN. We gratefully acknowledge JSC’s staff in
general, and Dirk Brömmel in particular, for their support in porting/debugging FEMPAR
and its dependencies to/on JUQUEEN.

References

[1] FEMPAR web page. https://web.cimne.upc.edu/groups/comfus/fempar.html

[2] S. Badia, A. F. Mart́ın and J. Principe. Implementation and scalability analysis of balanc-
ing domain decomposition methods. Archives of Computational Methods in Engineering.
Vol. 20(3), pp. 239–262, 2013.

[3] S. Badia, A. F. Mart́ın and J. Principe. A highly scalable parallel implementation of
balancing domain decomposition by constraints. SIAM Journal on Scientific Computing.
Vol. 36(2), pp. C190–C218, 2014.

[4] S. Badia, A. F. Mart́ın and R. Planas. Block recursive LU preconditioners for the thermally
coupled incompressible inductionless MHD problem. Journal of Computational Physics,
Vol. 274, pp. 562–591, 2014.

[5] S. Badia, A. F. Mart́ın and J. Principe. Multilevel balancing domain decomposition at
extreme scales. In preparation, 2015.

[6] J. Hogg, J. Reid and J. Scott. Design of a Multicore Sparse Cholesky Factorization Using
DAGs. SIAM Journal on Scientific Computing. Vol. 32(6), pp. 3627–3649, 2010.

https://web.cimne.upc.edu/groups/comfus/fempar.html

ICON with HD(CP)2 setup 120 m

Catrin Meyer1 and Thomas Jahns2

1Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH
2Deutsches Klimarechenzentrum GmbH

Description of the Code

The Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD)
developed different icosahedral non-hydrostatic (ICON) dynamical cores of high resolution
with the functionality of local zooming [1–4]a. These new model systems contain a consistent
numerical approximation to the adiabatic dynamics of the atmosphere and the tracer trans-
port processes, so that a better basis can be provided for the modelling of chemistry related
processes. The possibility of local zooming provides sufficient accuracy in regions of, e.g.,
complex topography, and at the same time keep the overall computational expense affordable
in long-term climate simulations.

The ICON dynamical cores solve the fully compressible non-hydrostatic equations of motion
for simulations at very high horizontal resolution. The discretisation of the continuity and
tracer transport equations is consistent in a sense that mass of air and its constituents are
conserved, which is a fundamental requirement for atmospheric chemistry. Furthermore, the
vector invariant form of the momentum equation are used, and thus, vorticity dynamics are
emphasised. The new dynamical core solves the system of primitive equations in grid point
space on the icosahedral grid, which facilitates the quasi-isotropic horizontal resolution on the
sphere and the restriction to regional domains. The discretisation method is defined on a
special case of Delaunay triangulation on the sphere, i.e., the icosahedral geodesic grid.

A cloud resolving, or large-eddy simulation (LES) version [6] of the ICON core with ultra-
high horizontal grid spacing of approximately 100 m is developed within the BMBF initiative
“High definition clouds and precipitation for advancing climate prediction”b, or HD(CP)2 for
short [5].

The code is mainly written in Fortran, with some library code (model time management,
I/O) written in C. It is parallelised with MPI and OpenMP, both of which can optionally be
switched off. It requires netCDF as an external library. Large output files can be produced for
detailed inspection of model state, but output was switched off for the workshop because very
short runs simulating only seconds of model time like those used in the workshop generate no
significant insight.

aSee http://www.mpimet.mpg.de/en/science/models/icon.html and http://www.dwd.de/bvbw/

appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_pageLabel=dwdwww_result_page&gsbSearchDocId=

749190 for more details.
bSee the project website for more detailed information: http://hdcp2.zmaw.de/Mission.2261.0.html

29

http://www.mpimet.mpg.de/en/science/models/icon.html
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_pageLabel=dwdwww_result_page&gsbSearchDocId=749190
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_pageLabel=dwdwww_result_page&gsbSearchDocId=749190
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=true&_pageLabel=dwdwww_result_page&gsbSearchDocId=749190
http://hdcp2.zmaw.de/Mission.2261.0.html

30 JUQUEEN Extreme Scaling Workshop 2015

Figure 1: The icosahedral grid used by ICON with a finer refinement for Europe.

Results

During the workshop we performed strong scaling tests for the HD(CP)2 setup with a horizontal
resolution of 120 m. Our test case computed 20 s simulation time. The performance analysis is
based on the ICON internal timer for “timeloop total” (timeloop). This instrumented region
of code includes the recurring physics and the dynamic core of the model but no initialisation
and output. During our tests in the workshop the I/O was switched off.

Table 1 and Figure 2 summarise the performance results for 1 MPI rank per node and 64
OpenMP threads per rank. We were able to show that the LES physics and the dynamical
core scales well up to the full JUQUEEN machine. We reach a speed-up of 12.25 and still an
efficiency of 44 % on 28 racks compared to 1 rack.

Table 1: Scaling tests for the ICON 120 m HD(CP)2 setup, showing number of compute nodes
(bg size), ranks per node (rpn), total number of processes (MPI ranks), number of
OpenMP threads per rank (tpr), total number of threads (Threads), timing from
timeloop, averaged memory consumption per node (Memory)

bg size rpn MPI ranks tpr Threads Time (s) Memory [GB]

1 024 1 1 024 64 65 536 154.39 13.19
2 048 1 2 048 64 131 072 83.34 8.25
4 096 1 4 096 64 262 144 45.96 5.76
8 192 1 8 192 64 524 288 27.08 4.51

16 384 1 16 384 64 1 048 576 17.03 3.88
28 672 1 28 672 64 1 835 008 12.60 3.71

ICON 31

16384 32768 65536 131072 262144 458752
Cores

0

20

40

60

80

100
Ef
fic

ie
nc

y
[%

]

01 MPI per node, 64 Threads per MPI process

Figure 2: Scaling for the ICON 120 m HD(CP)2 setup with timing from timeloop

Unfortunally for more MPI ranks the internal timer of ICON needed to be switched off,
because of impeded scalability The timers use MPI MINLOC and MPI MAXLOC to find ranks with
minimal/maximal run-time in portions of the code, but both reductions are unaccelerated on
Blue Gene/Q. We did a quick replacement with MPI Wtime and Fortran WRITE to the console.
With this “new” timer measurement we did a comparison between different MPI/OpenMP
combinations (Table 2, Figure 3). Because we placed the “new” timer measurement at slightly
different positions in the code, it does not produce the values of the internal timers. But a
comparative analysis is still possible: We get a better performance if we use more MPI tasks.
For measurments at higher number of MPI ranks we recognized another problem during the
initialization process. A pair of reductions (MPI Allreduce) during the domain decomposi-
tion phase of model initialization also takes significantly longer on Blue Gene/Q than on other
machines, because hardware-accelerated reductions only work for specific, previously undocu-
mented circumstances. Specifically ICON

1. initializes MPI with MPI THREAD MULTIPLE,

2. passes reduction arguments with MPI IN PLACE,

3. uses user-defined reductions (MPI Op create) and

4. employs communicators derived from MPI COMM WORLD for reductions.

All four aspects need to be changed in code to exploit acceleration. The combination with
4 MPI tasks and 16 OpenMP threads per rank does not fit in a wallclock of 45 minutes on the
full machine because of this issue.

In our test case the initialisation phase needs most of the runtime, because of the short
simulation time. For a real simulation case the model will run for several days or months and
so the initialisation takes place only once at the beginning and does not influence the total
runtime as much as in our test case. The performance results of the test case are therefore
comparable with a real simulation case. The main parts of the model, i.e., the LES physics
and dynamic core, can use the 28 racks of JUQUEEN efficiently.

Conclusions

The above measurements are due to the significant progress made during the last two years in
terms of efficient memory use in HD(CP)2: previous tests could not launch at 120 m resolution
on Blue Gene/Q due to memory constraints.

32 JUQUEEN Extreme Scaling Workshop 2015

Table 2: Scaling tests for the ICON 120 m HD(CP)2 setup, showing number of compute nodes
(bg size), ranks per node (rpn), total number of processes (MPI ranks), number of
OpenMP threads per rank (tpr), total number of threads (Threads), timing from
MPI Wtime, averaged memory consumption per node (Memory)

bg size rpn MPI ranks tpr Threads Time (s) Memory [GB]

2 048 1 2 048 64 131 072 145.34 8.25
4 096 1 4 096 64 262 144 78.49 5.76
8 192 1 8 192 64 524 288 45.34 4.51

16 384 1 16 384 64 1 048 576 27.37 3.88
28 672 1 28 672 64 1 835 008 21.78 3.71

2 048 2 4 096 32 131 072 113.30 8.38
4 096 2 8 192 32 262 144 62.39 5.88
8 192 2 16 384 32 524 288 36.04 4.61

16 384 2 32 768 32 1 048 576 21.67 4.27
28 672 2 57 344 32 1 835 008 15.86 4.51

2 048 4 8 192 16 131 072 114.73 8.62
4 096 4 16 384 16 262 144 63.51 6.08
8 192 4 32 768 16 524 288 36.33 5.40

16 384 4 65 536 16 1 048 576 21.61 6.12

32768 65536 131072 262144 458752
Cores

0

20

40

60

80

100

Ef
fic

ie
nc

y
[%

]

01 MPI per node, 64 Threads per MPI process
02 MPI per node, 32 Threads per MPI process
04 MPI per node, 16 Threads per MPI process

32768 65536 131072 262144 458752
Cores

1

2

4

8

14

Sp
ee

d-
Up

optimal
01 MPI per node, 64 Threads per MPI process
02 MPI per node, 32 Threads per MPI process
04 MPI per node, 16 Threads per MPI process

Figure 3: Scaling for the ICON 120 m HD(CP)2 setup with timing from MPI Wtime

It also shows in the scalability issues associated with initialisation, output and internal time
measurements that there is still major efforts in each of these parts of the implementation
required to make efficient use of Blue Gene/Q hardware for full-featured production runs. It
should also be noted that because the runs can only begin at already quite high numbers
of tasks to accumulate the required total memory minimum, some inefficiency due to load-
imbalance cannot be deduced from the scaling plots for this model resolution since it is included
in the already MPI-parallelized baseline simulation.

ICON 33

References

[1] A. Gassmann and H.-J. Herzog, Towards a consistent numerical compressible non-
hydrostatic model using generalised Hamiltonian tools, Q. J. R.Meteorol.Soc., (134) (2008)
1597–1613.

[2] H. Wan, Developing and testing a hydrostatic atmospheric dynamical core on triangular
grids, Ph.D. thesis, International Max Planck Research School on Earth System Mod-
elling, (2009).

[3] H. Wan, M. A. Giorgetta, G. Zängl, M. Restelli, D. Majewski, L. Bonaventura,
K. Fröhlich, D. Reinert, P. Ŕıpodas, L. Kornblueh and J. Förstner, The ICON-1.2 hy-
drostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and per-
formance of the baseline version, Geoscientific Model Development, 6(3) (2013) 735–763
[DOI: 10.5194/gmd-6-735-2013]

[4] G. Zängl, D. Reinert, P. Ripodas, and M. Baldauf, The ICON (ICOsahedral Nonhy-
drostatic) modelling framework of DWD and MPI-M: Description of the nonhydrostatic
dynamical core, Q. J. R.Meteorol.Soc., (2014) [DOI: 10.1002/qj.2378].

[5] B. Stevens, J. Biercamp, U. Burkhardt, S. Crewell, S. Jones, A. Macke, A. Seifert and
C. Simmer, HD(CP)2: High definition clouds and precipitation for advancing climate
prediction, Tech. report (2011)

[6] A. Dipankar, R. Heinze, C. Moseley and B. Stevens, A large eddy simulation version of
ICON (ICOsahedral Nonhydrostatic): Model description and validation, J. of Advances
in Modeling Earth Systems (2014) (submitted)

MPAS-A Extreme Scaling Experiment

Dominikus Heinzeller1 and Michael Duda2

1Karlsruhe Inst. of Technology, Inst. of Meteorology and Climate Research
2National Center for Atmospheric Research, Earth System Laboratory

Description of the Code

The Model for Prediction Across Scales (MPAS) [1] is composed of a set of several earth-system
component models built within a shared software framework; at present, MPAS includes an
atmospheric model, MPAS-A [2], an ocean model, MPAS-O [3], and a land-ice model, MPAS-
LI. The key feature common to all MPAS models is their use of unstructured centroidal Voronoi
tesselations (CVTs) as their horizontal meshes. CVT meshes allow global simulations to be
performed on a variable-resolution mesh with smooth transitions between regions of low and
high resolution. In this scaling experiment, we focus on the atmospheric model, MPAS-A.
Based on the Voronoi mesh, the model uses a C-grid staggering for the state variables, i.e.,
wind components are modelled at the faces of every cell, and the prognosed component of the
wind is orthogonal to the cell face. The governing equations can then be cast in a way such
that energy, momentum and water vapour content are conserved (Figure 1).

The MPAS code is mainly written in Fortran, with some smaller parts written in C. Parallel
I/O is realised using the Parallel I/O library PIO, for which the user can choose serial/parallel
NetCDF3 or serial/parallel NetCDF4. Since MPAS-A is a global model, only one initial
conditions file (init.nc) is read during the initialisation of the model. The frequency of writing
output data (diagnostic data, restart data) is entirely up to the user. Parallelisation of the
latest released version of the model code employs only MPI for inter-process communication,
but work is underway to enable hybrid parallelisation with MPI and OpenMP.

C-grid staggering  
of state variables

Horizontal, unstructured  
Voronoi mesh (SCVTs)

Dual Delaunay  
CVT grid (triangles)

Figure 1: (left) global variable resolution mesh, (right) C-grid staggering

35

36 JUQUEEN Extreme Scaling Workshop 2015

Results

We used a regular, global 3 km mesh with more than 65 million horizontal grid cells and 41
vertical levels to conduct the extreme scaling experiment. Up to now, only a few runs using
this mesh have been conducted on the National Center for Atmospheric Research (NCAR)
Yellowstone supercomputer [4] using 16 384 MPI tasks. This resolution was chosen to (a)
investigate the scalability of MPAS-A on the full JUQUEEN system, and (b) demonstrate the
feasibility to conduct global, convection-resolving simulations on massively parallel systems.

In a first step, we analysed the code with Scalasca/Score-P [5]. An example profile from
MPAS-A in Figure 3 shows a significant imbalance of MPI Collective File I/O time. Using sev-
eral smaller model configurations (120 km regular mesh, 120–15 km variable-resolution mesh,
90–12 km variable-resolution mesh), we could show that the parallel efficiency of MPAS-A can
be correlated to the number of grid cells owned by each MPI task. For less than approx.
160 grid cells per task, the MPI communication overhead becomes significant and the parallel
efficiency drops below 70%. This is in agreement with prior findings on NCAR Yellowstone.
For the 3-km mesh with more than 65 million grid points, we therefore expected a breakdown
of the parallel efficiency around 400 000 MPI tasks.

Initial runs with a resolution of 3 km revealed previously unknown problems of MPAS-A
on JUQUEEN. In the model initialisation, a bootstrapping step is required to set up the grid
and instruct individual tasks with whom to share information about neighbouring grid cells
(“halo/ghost cells”). This initial bootstrapping takes between 18 and 29 minutes, depending on
the number of MPI tasks (Table 1). A second problem comes from reading the initial conditions
file init.nc, which for the 3 km mesh is 1.2 TB in size. Performance improvements for this step
were achieved by introducing two runtime environment variables that were presented during
the workshop (BGLOCKLESSMPIO F TYPE, ROMIO HINTS), and by optimising the number of I/O
tasks as a function of total tasks (128 I/O tasks per rack, i. e., per 16 384 tasks). While the
parallel reading of the initial conditions file improves slightly with the number of tasks (I/O
tasks located in different racks), the bootstrapping takes longer for larger numbers of tasks.
Hence, the overall model initialisation is to some degree independent of the number of tasks
and takes approximately 45 minutes for the 3 km mesh. One notable exception here is the run
on 8 racks, for which the initial I/O is only 50% of that of the other runs. The exact reasons
for this behaviour need to be investigated, but it is possible that this combination of file size
and I/O tasks are a sweet spot on JUQUEEN.

The substantial memory requirements for the 3 km mesh did not allow to run the model
with only 1 or 2 racks. The baseline for our scaling experiment is therefore the run on 4
racks (65 536 MPI tasks, 512 I/O tasks). Performance improvements for the model integration
were achieved by using appropriate compiler flags for this system (-O3 -qstrict -qarch=qp

-qtune=qp). Contrary to the model initialisation, the time integration step scales very well up
to around 400 000 tasks, with a parallel efficiency of 87% for 24 racks (393 216 tasks) compared
to the baseline with 4 racks. The test run on the full system (28 racks, 458 752 tasks) showed a
poor performance compared to the run on 24 racks, since the MPI overhead becomes significant
for only 142 owned cells per task. All test runs were conducted with a 18 s model integration
time step for 1 hr model time. However, we found that in order to keep the model stable when
starting off from a 48 km re-analysis dataset (CFSR) as initial conditions, a more conservative
time step is required. This is because MPAS currently lacks a dynamical initialisation system
(e. g., digital filters, adaptive timestepping). We repeated runs for 4, 8, and 16 racks with a
12 s time step without detecting any instabilities. The measured real time for the three 12 s
runs was very close to 1.5 times the real time for the corresponding 18 s runs.

Table 1 and Figure 2 summarise the required times of the individual steps of the 3 km runs.
All runs were conducted with MPI parallelisation only and with 16 MPI tasks per node. Due to

MPAS-A 37

Table 1: MPAS-A 3 km global simulation experiment (strong scaling)

bg size Threads (MPI only) Bootstrapping (s) Initial read (s)

1024 16384 1240 n/a
2048 32768 1260 n/a
4096 65536 1260 1260
8192 131072 1370 590

16384 262144 1560 1020
24576 393216 1680 1080
28672 458752 1740 1140

bg size Time integration for Parallel efficiency Integration in
1-hour model time (s) integration only 24h walltime∗

1024 n/a n/a n/a
2048 n/a n/a n/a
4096 1760 100.0% 29h
8192 960 91.2% 53h

16384 490 90.1% 104h
24576 335 87.7% 152h
28672 360 69.5% 141h

∗incl. model initialisation (bootstrapping, reading), no writing, 12 s time step

All runs are cold start runs for 1hr each, starting 1981-09-01, integration time step 12s instead of 18s

Threads per Threads Memory per Memory MODEL RUN TOTAL MODEL INITIALISATION BOOTSTRAP MODEL INITIALISATION READ MODEL INTEGRATION MISC Efficiency Integration in 24h walltime ncells/task Estimate for output Hours model time

System Nodes node total thread [Gb] total [Gb] RT/1hr [s] Scaling Ideal CPUh/15min RT/1hr [s] Scaling Ideal CPUh/15min RT/1hr [s] Scaling Ideal CPUh/15min RT/1hr [s] Scaling Ideal CPUh/15min RT/1hr [s] Scaling Ideal CPUh/15min integration only in hours to disk for 24h run in 24h walltime

Juqueen 1024 16 16384 1 16384 n/a n/a 0.25 n/a 1240 1.016129032258060.25 5643.37777777778n/a n/a 0.25 n/a n/a n/a 0.25 n/a n/a n/a 0.25 n/a n/a n/a 4000 n/a

2048 16 32768 1 32768 n/a n/a 0.5 n/a 1260 1 0.5 11468.8 n/a n/a 0.5 n/a n/a n/a 0.5 n/a n/a n/a 0.5 n/a n/a n/a 2000 n/a

4096 4096 16 65536 1 65536 4370 1 1 79553.4222222222 1260 1 1 22937.6 1260 1 1 22937.6 1760 1 1 32039.8222222222 90 1 1 1638.4 100.00% 47.61 1000 7200 44

8192 8192 16 131072 1 131072 3254 1.342962507682852 118474.524444444 1370 0.919708029197082 49880.1777777778 834 1.510791366906472 30365.0133333333 960 1.833333333333332 34952.5333333333 90 1 2 3276.8 91.67% 87.61 500 7200 80

16384 16384 16 262144 1 262144 3160 1.382911392405064 230104.177777778 1560 0.8076923076923084 113595.733333333 1020 1.235294117647064 74274.1333333333 490 3.591836734693884 35680.7111111111 90 1 4 6553.6 89.80% 170.88 250 7200 156

24576 24576 16 393216 1 393216 3185 1.372056514913666 347886.933333333 1680 0.75 6 183500.8 1080 1.166666666666676 117964.8 335 5.253731343283586 36590.9333333333 90 1 6 9830.4 87.56% 249.40 167 7200 228

28672 28672 16 458752 1 458752 3330 1.312312312312317 424345.6 1740 0.7241379310344837 221730.133333333 1140 1.105263157894747 145271.466666667 360 4.888888888888897 45875.2 90 1 7 11468.8 69.84% 231.75 143 7200 212

R
eq

ui
re

d
tim

e
(s

)

0

1250

2500

3750

5000

Number of MPI threads

4096 8192 16384 24576 28672

Bootstrapping Reading of initial conditions
Time integration Miscellaneous

R
eq

ui
re

d
tim

e
(s

)

0

1250

2500

3750

5000

Number of MPI threads

4096 8192 16384 24576 28672

Bootstrapping Reading of initial conditions
Time integration Miscellaneous

Figure 2: Required times for individual steps of the test runs (18 s time step)

38 JUQUEEN Extreme Scaling Workshop 2015

Figure 3: Scalasca/Score-P profile of 2048-process execution of MPAS-A showing time in
MPI File read all. Rank 2032 takes 19.3s, which is some 7.5s longer than the
others which are blocked in the preceding MPI File set view.

time constraints, we could only conduct runs without writing output to disk. The last column
in Table 1 is therefore an upper limit on how many hours the 3-km model can be advanced
within 24h walltime, and is calculated as follows.

A 12 s model integration time step is assumed, and the real time required is scaled from
the 18 s runs by 1.5 for 24 and 28 racks (no 12 s runs were conducted). Further, for a typical
production run, diagnostic output files of 15 GB in size are written every 3 h model time, while
comprehensive output files of approx. 250 GB in size are written every 24 h model time. A
restart file of 2.1 TB is written at the end of the model run. For the 16 and 24 rack runs, we
take a conservative estimate that roughly two hours of the 24 h walltime will be used up by
writing these files to disk. Under this assumption and the requirement that each job advances
the model by full days only, we obtain typical job sizes for production runs of 4 days on 16
racks, and 6 days on 24 racks.

MPAS-A 39

Conclusions

During the workshop we could demonstrate that it is possible conduct global, convection-
resolving atmospheric simulations on present massively-parallel systems. We identified bot-
tlenecks and pitfalls in the MPAS-A code, such as the initial bootstrapping and the need for
optimising the file I/O operations. The lectures and the hands-on sessions of the Porting and
Tuning Workshop provided us with several ideas on how to improve the reading and writing on
JUQUEEN and presumably also on other massively parallel systems. In the future, we would
like to conduct further experiments with output to disk enabled to verify the assumptions
made above.

Acknowledgments

We would like to acknowledge the extensive and valuable support of Dirk Brömmel, Wolf-
gang Frings, Markus Geimer, Klaus Görgen, Sabine Grießbach, Lars Hoffmann, Catrin Meyer,
Michael Rambadt, Michael Stephan, Brian Wylie. We also thank and PRACE for funding the
earlier PATC workshop.

References

[1] http://mpas-dev.github.io

[2] W.C. Skamarock, J.B. Klemp, M.G. Duda, L.D. Fowler, S.-H. Park, T.D. Ringler (2012):
A Multi-scale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations
and C-Grid Staggering. Monthly Weather Review, 140, 3090–3105.

[3] T.D. Ringler, M. Petersen, R.L. Higdon, D. Jacobsen, P.W. Jones, M. Maltrud (2013): A
Multi-Resolution Approach to Global Ocean Modeling. Ocean Modelling, 69, 211-232.

[4] NCAR Yellowstone. https://www2.cisl.ucar.edu/resources/yellowstone

[5] Scalasca scalable performance analysis toolset. http://www.scalasca.org/

http://mpas-dev.github.io
https://www2.cisl.ucar.edu/resources/yellowstone
http://www.scalasca.org/

Direct Numerical Simulations of Fluid Turbulence

at Extreme Scale with psOpen

Jens Henrik Goebbert1 and Michael Gauding2

1Jülich Aachen Research Alliance, Germany
2Chair of Numerical Fluid Dynamics, TU Freiberg, Germany

Description of the Code

The hybrid OpenMP/MPI code psOpen has been developed at the Institute for Combustion
Technology, RWTH Aachen University, to study incompressible fluid turbulence by means
of direct numerical simulations. Direct numerical simulation (DNS) solves the Navier-Stokes
equations for all scales down to the smallest length scale present in turbulent flows and provides
a complete description of the flow, where the three-dimensional (3D) flow fields are known as
a function of space and time. Because of growing computational capabilities DNS of turbulent
flows has become an indispensable tool. Particularly for high Reynolds numbers DNS is com-
putationally very expensive as the number of required grid points N3 increases tremendously
with Reynolds number, i.e.

N3 ∝ Re
9/2
λ , (1)

where Reλ denotes the Taylor based Reynolds number. DNS of high Reynolds number turbu-
lence are conducted nowadays on up to 122883 grid points and reach Taylor based Reynolds
numbers of more than 2000. Figure 1 shows the field of a passive scalar and its dissipation
rate in a turbulent flow obtained from DNS with Reλ = 530. Very fine fronts arise that have
to be resolved on the numerical grid.

For efficiency and accuracy psOpen employs a pseudo-spectral method, where a Fourier
transform of the governing equations is solved in spectral space. Here, derivatives in the
transport equation turn into multiplications by the wavenumber. All linear terms can be
treated in this way. However, the Fourier transformation of the non-linear term turns into a
convolution in Fourier space. This operation is computationally very expensive and requires
O(N2·3) operations. Therefore, instead of directly evaluating the convolution operation, the
multiplication of the non-linear term is computed in real space. This approach requires only
O(N3 logN3) operations and is called a pseudo-spectral method since only differentiation is
performed in Fourier space. A pseudo-spectral method requires frequently transformations
between real and spectral space which is particularly challenging for massively-parallel setups.

Implementing the communication for block decomposition in an efficient manner is a very
demanding task. For massively-parallel computations on distributed systems a spatial decom-
position of the computational domain is mandatory. The frequently invoked Fourier transfor-
mation is a non-local operation and requires access to all data along a global grid line for each
computational process. psOpen was improved by a new inhouse-developed 3D FFT library
optimised to the special needs of pseudo-spectral DNS. Most CPU time is consumed in this

41

42 JUQUEEN Extreme Scaling Workshop 2015

Figure 1: DNS of a passive scalar advected by a turbulent velocity field with 40963 grid points
and Reλ = 530. Slice of scalar field (left) and scalar dissipation (right).

Figure 2: Illustration of blocking communication (top) and non-blocking communication (bot-
tom). For the latter, the processing of several FFTs is overlapped.

library which frequently invokes the 3D-FFT algorithm. It uses the Engineering and Scientific
Subroutine Library (ESSL), which is specifically designed for the IBM Blue Gene/Q processor
and provides a shared memory FFT function set for best parallelisation on each node. For
each iteration the flow field solver calls nine 3D-FFTs and the solver for passive scalar addi-
tionally another four 3D-FFTs. Without the improved 3d-FFT library this results in 80% of
the compute time.

For an optimal use of the hardware resources three techniques have been combined which
reduces the communication time by a factor of more than two.

1. The number of operations and the size of data to be transposed while computing a 3D-
FFT has been reduced by integrating the de-aliasing cut-off filter into the 3D-FFT. In
total the number of 1D-FFTs is reduced by 29.6% when compared to the non-filtered
setup if the filter cuts one-third of the frequencies in each dimension. At the same time
the data to be sent is reduced by 33.3% for the first global transpose and by 55.5% for
the second transpose.

psOpen 43

2. A MPI-parallelised 3D-FFT is based on time-consuming collective communications. The
new 3D-FFT library allows to overlap these communications with the computation of
multiple FFTs at the same time. This reduces each 3D-FFT by another 15-25%.

3. All 3D-FFTs needed to compute one iteration of the velocity and passive scalar are
blocked in two single calls of the non-blocking 3D-FFT library ‘nbcFFT’, which therefore
can overlap one instance of six and another of seven 3D-FFTs at once. This increases the
benefit from an overlap communication and computation of 3D-FFTs and reduces the
required extra time for a passive scalar by almost 50%. A schematic of the non-blocking
communication approach is shown in Figure 2.

Results

The first proof of scalability on IBM Blue Gene architecture was made with the “Jülich
Blue Gene/P Porting, Tuning, and Scaling Workshop 2008” and the code has been further
improved over the years since then. In 2012 it was ported to JUQUEEN and for the “First
JUQUEEN Porting and Tuning Workshop 2013” and “Second JUQUEEN Porting and Tun-
ing Workshop 2014” had switched from the three-dimensional FFT library P3DFFT to the
inhouse-developed 3D-FFT library nbcFFT.

The scaling performance of psOpen with three different grid sizes, namely 40963, 61443 and
81923, has been studied in the latest workshop. The chosen grid sizes are of high relevance for
production runs. Production runs with up to 61443 grid points have been already conducted
and those with 81923 grid points are planned in the near future. It is customary to compute
DNS of homogeneous isotropic turbulent flows in a periodic box in single precision arithmetic.
Therefore, all data presented in this report are based on single-precision computations. Com-
pared to double-precision this reduces the communication amount by a factor of two, while
keeping constant the computational cost on a Blue Gene/Q architecture.

Figure 3 shows the speedup of psOpen for configurations between 20483 and 81923 grid
points. Full machine runs were performed for 61443 and 81923 grid points. The memory
requirement becomes very demanding for these grid sizes and determines the number of com-
pute nodes that are necessary. psOpen exhibits an almost linear speedup up to 16384 compute
nodes for all investigated grid sizes. Runs with 24576 compute nodes exhibit a satisfying ef-
ficiency, considering the underlying mathematical operation of solving the Poisson equation
which enforces global communication. For the full-machine run with 28672 compute nodes we
observe a further decline in efficiency, which might result from the large (size 7) B-dimension
of the five-dimensional torus network of JUQUEEN. For reference Table 1 summarises the
investigated runs and shows the time per iteration.

Table 1: Strong scaling tests of psOpen for various grid sizes.

time per iteration in seconds
bg size rpn ranks tpp threads 20483 40963 61443 81923

2048 32 65 536 2 131 072 0.6295 3.0785 - -
4096 32 131 072 2 262 144 0.3281 1.8815 - -
8192 32 262 144 2 524 288 0.1805 0.9606 2.3276 -

16384 32 524 288 2 1 835 008 - 0.4950 1.2132 -
24576 32 786 432 2 1 572 864 - - 0.9530 3.7811
28672 32 917 504 2 1 835 008 - - 0.9278 3.6801

44 JUQUEEN Extreme Scaling Workshop 2015

2048 8192 16384 24576 28672
nodes

sp
ee

du
p

20483

40963

61443

81923

linear

Figure 3: Strong scaling of psOpen for four grid sizes between 20483 and 81923 grid points.
Linear scaling is shown for reference. psOpen exhibits an almost linear speedup for
up to 16384 compute nodes.

Currently 32 MPI processes each with two OpenMP tasks are running on each compute
node. As the IBM XLF compiler on JUQUEEN does not support nested OpenMP the number
of MPI processes per compute node is currently rather large. Using GCC compilers and/or
introducing pthreads over OpenMP might reduce this overhead in future.

File I/O is integrated into psOpen by means of parallel HDF5. The I/O performance depends
on the number of allocated compute nodes. With 8192 compute nodes up 30.2 GB/s can be
reached. For the scaling analysis psOpen was initialised with synthetic turbulence and file I/O
was skipped.

For custom process mapping we use the Python tool Rubik [3], which was called from the
jobscript and generates the map file on the fly. It provides an intuitive interface to create
mappings for structured communication patterns and showed 10% performance increase for
psOpen production runs in the past. As psOpen has a two-stage communication pattern
with large packages in stage one and smaller packages in stage two, the mapping was chosen
such that in the first stage only MPI processes on the same nodeboard communicate. The
communication between MPI processes on different nodeboards therefore exchange the small
packages of the second stage. Even though this mapping shows good results up to 16 rack
runs, psOpen did not seem to benefit in the full-machine run. A satisfying explanation for this
could not be found yet. As writing and reading of the mapfile for 28 racks required 15 minutes,
further investigations was skipped and the custom mapping was disabled for the full-machine
run setup.

Acknowledgements

Funding from the Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is part of
the Excellence Initiative of the German federal state governments, is gratefully acknowledged.
The authors also gratefully acknowledge the computing time provided on the supercomputer
JUQUEEN at Jülich Supercomputing Centre (JSC) within the projects JHPC09 and HFG00.

psOpen 45

References

[1] J. H. Goebbert, M. Gauding, M. Gampert, P. Schaefer, N. Peters, L. Wang; A new View on
Geometry and Conditional Statistics in Turbulence Inside: Innovatives Supercomputing
in Deutschland, The German National Supercomputing Centres HLRS, LRZ and NIC,
9(1), 30-37, (2011)

[2] N. Peters, L. Wang, J. P. Mellado, J. H. Goebbert, M. Gauding, P. Schaefer, M. Gampert;
Geometrical Properties of Small Scale Turbulence, Proceedings of the John von Neumann
Institute for Computing, NIC Symposium, 365-371, (2010)

[3] RUBIK, Lawrence Livermore National Laboratory, https://computation.llnl.gov/

project/performance-analysis-through-visualization/software.php

https://computation.llnl.gov/project/performance-analysis-through-visualization/software.php
https://computation.llnl.gov/project/performance-analysis-through-visualization/software.php

SHOCK: Structured High-Order Computational Kernel

for Direct Numerical Simulation of compressible flow

Manuel Gageik and Igor Klioutchnikov

Shock Wave Laboratory, RWTH Aachen University, 52056 Aachen, Germany

Description of the Code

SHOCK (Structured High-Order Computational Kernel) is an application for Direct Numer-
ical Simulation (DNS) of compressible flow using a shock-capturing high-order finite difference
WENO-scheme to calculate the full system of Navier-Stokes equations on curvilinear structured
meshes. The three-dimensional, two-dimensional rotational symmetric and two-dimensional
unsteady, compressible flow can be simulated. Simulations of inviscid flows (Euler equations)
are also possible.

SHOCK is programmed in C and contains various capabilities of the numerical method:

1. fifth and ninth order WENO scheme (spatial discretisation of first order derivatives)

2. sixth and tenth order central differences (spatial discretisation of second order deriva-
tives)

3. third and fourth order Runge-Kutta (temporal discretisation)

WENO uses nonlinear weights preserving monotonicity in the vicinity of strong gradients
(e.g. shocks). In order to improve the numerical stability of the WENO scheme, a local Lax-
Friedrichs flux vector splitting is implemented. A powerful general mesh topology containing
sub-zones with rotated coordinate systems is implemented enabling the use of arbitrary rotated
and curved meshes. As a consequence, the introduction of a transformation matrix between the
sub-zones and asynchronous MPI communication become necessary. SHOCK uses a pure MPI
parallelisation. Further, instead of a global Cartesian communicator, now the mesh interfaces
provide the information about communication partners that are connected via the interfaces.

SHOCK uses a file format for CFD data (CGNS [CFD General Notation System], using
HDF5). Limited to reading only one file at the start and writing only one file at the end of
the simulation (size < 200 GB for current largest production), the I/O of SHOCK is optimised
for ease-of-use and data pre- or post-processing is not needed. The results can be transferred
continuously from the production system. Although HDF5 supports parallel I/O its perfor-
mance is still an issue and further improvements are necessary. An additional small binary file
contains the decomposition of the mesh.

Further details of SHOCK are published on our website [4] and publications, e.g. [1–3].

47

48 JUQUEEN Extreme Scaling Workshop 2015

Figure 1: NACA 0012, M∞ = 0.65, Rec = 5 · 105, α = 2◦, 1 billion mesh points. Q-criterion
iso-surfaces (Q=100) coloured by local Mach number (0 < M < 1).

File I/O (HDF5) problems

Before the “Extreme Scaling Workshop” started, various configuration cases were generated
and tested during the preceding “Porting & Tuning Workshop”. Advice given by the JSC
support team was very useful, since a critical problem of the file I/O was detected. The
HDF5-based I/O showed scaling problems for opening of the CFD data file. The initialisation
of SHOCK — mainly reading the start information (coordinates, velocity, pressure and density)
— would take too long to perform all scaling configurations within the limited time window of
the workshop. Within SHOCK, the command cgp open (from the CGNS-library) is called and
takes up to hours depending on the job size and file size. An HDF5 expert could reproduce
this problem with the same file and confirmed the bad performance of CGNS and HDF5. In
his view, the problem is caused by the current file-opening strategy. All processes each read
the metadata of the HDF5 file using independent MPI file I/O operations. The I/O analysis
tool Darshan showed thousands of small accesses reading only 512 bytes. An improved (not
yet released) version of HDF5 replaces the global independent reading by a single read of the
file by one process which then broadcasts the information to all. First results show significant
reductions of the time for opening a file. Nevertheless, this version of CGNS/HDF5 is still
not available, therefore a quick workaround was implemented. Since the binary file which
is read in seconds contains all decomposition information, it was possible to generate the
required start information within SHOCK. Consequently, the I/O was nearly deactivated and
the initialisation phase then took only seconds.

Results

Using the deactivated I/O, 24 test cases were simulated. These consisted of six job sizes
(bg size = 8192, 12288, 16384, 20480, 24576 and 28672 [full machine]) for 4 problem types
(weak scaling with 32 rpn [ranks per node], weak scaling with 64 rpn, strong scaling with
32 rpn and strong scaling with 64 rpn). For the strong scaling problem, a fixed mesh size
(2688 x 2560 x 3072 = 2 · 1010 mesh points) is utilised and decomposed for all ranks. The
number of mesh points is not a power of 2 since the JUQUEEN bg sizes contain also factors

SHOCK 49

of 3, 5 and 7 (which are not usually used). For the weak scaling problem, a fixed mesh size
per rank is used. Due to an error within the job creation script, these mesh sizes are not
identical for the 32 rpn and 64 rpn type. For all 32 rpn simulations the mesh sizes per rank are
16×16×16, and for all 64 rpn simulations the mesh sizes are 16×32×32. This is not really a
problem but it prevents a direct comparison of both types. Consequently, a significantly larger
simulation time of “weak, 64 rpn” compared to “weak, 32 rpn” is observable in Table 1.

The results of all test cases are illustrated in Figure 2. The lower x-axis represents the
bg size and the upper x-axis the respective number of MPI ranks. The y-axis represents the
speedup with respect to the smallest job (bg size = 8192). The weak scaling curves (on the
left side) show good scaling since the performance loss caused by an increasing bg size is
approximately 10% for the worst case (maximal bg size). A detailed quantitative evaluation
of this loss is not possible since the mesh sizes per rank of the production situations and even
for “weak, 32 rpn” and “weak, 64 rpn” are different, and therefore also the relation of time for
computation to communication is different. However, the general scaling behaviour of the weak
scaling problem is more than satisfactory (ideally unity for all bg sizes) and it is reasonable
to assert that SHOCK is capable of effectively simulating even larger problem sizes with the
JUQUEEN maximum bg size of 28672.

Against this background, hints from some other participants of the “Extreme Scaling Work-
shop” were very insightful. First, we implemented a version using single-precision for all
variables (formerly all double-precision). We tested it after the workshop and could reduce
the simulation time by 30%. The analysis of the impact on accuracy is not yet done. Second,
we obtained a subroutine to obtain the memory utilisation and used it in SHOCK. These im-
provements can allow enlargement of the problem size per rank (for a constant memory size)
since the memory requirement is reduced (from double to single precision) and monitoring of
memory usage is possible (using the provided subroutine). Consequently, the ratio of time for
computation to communication is improved and efficiency could be increased. Here, further
tests are necessary.

The second type of test cases are the strong scaling curves (right side of Figure 2). An
additional dashed line is plotted which shows perfect linear scaling behaviour. The blue curve
(32 rpn) scales nearly linearly. The orange curve (64 rpn) seems to show super scaling be-
haviour. This means that SHOCK is able to obtain an extra performance boost from the
decomposition of the problem size. A possible explanation might be that the number of cache
misses is reduced. When the processor looks in the cache (which is very fast) and does not
find the item being looked up, it has to go to memory (which is much slower than cache). For
a smaller problem size, the probability is larger that the processor finds the item in the cache.
Here, the change from double to single precision could additionally increase this effect since
twice as many items can be stored in the cache. The drop of the orange “strong, 64 ppn”
curve at bg size = 28672 is perhaps caused by a very bad ratio of time for computation to
communication. This is linked with the relation of ghost points (which are communicated to
neighbour processes) and real points which store computation results. For the considered case
(“strong, 64 rpn” with bg size = 28672) the relation of ghost points to real points is 1.03.
Benefit gained from the local problem size reduction is smaller than the loss added by the
extra communication required for this decomposition. However, the reduced memory effort
(double precision to single precision) of SHOCK leads to the possibility to increase the problem
size. Then the ratio of time for computation to communication is much better and the drop
(“strong, 64rpn” at bg size = 28672) might disappear.

In Table 1, simulation time measurements in minutes are listed for all test cases. Time for
communication was also recorded but is not shown, since it was measured only by rank 0 and
with no blocking communication or additional MPI Barrier before and after the communica-
tion (SHOCK uses MPI Isend/MPI Irecv and MPI Waitall) these measurements are therefore

50 JUQUEEN Extreme Scaling Workshop 2015

Table 1: SHOCK scaling results (weak/strong scaling, 32/64 ranks per node)

Time (min.)
rpn bg size MPI ranks Weak Strong

32 8192 262 144 0.142871 2.527755
32 12288 393 216 0.144875 1.663479
32 16384 524 288 0.146119 1.317004
32 20480 655 360 0.159132 1.067620
32 24576 786 432 0.159243 0.856886
32 28672 917 504 0.165825 0.751480

64 8192 524 288 0.836828 2.567251
64 12288 786 432 0.878316 1.397425
64 16384 1 048 576 0.874725 1.084076
64 20480 1 310 720 0.923541 0.924936
64 24576 1 572 864 0.912548 0.754874
64 28672 1 835 008 0.940829 0.993653

Figure 2: SHOCK weak and strong scaling graphs (32/64 ranks per node)

SHOCK 51

not representative for the entire collection of processes.
All in all, we are very content with SHOCK’s scaling behaviour. It is above our expecta-

tions. The only limiting factor (detected so far) is the I/O using HDF5, where we are largely
depending on improvements of its parallel I/O.

References

[1] M. Gageik, I. Klioutchnikov, H. Olivier; Mesh study for a direct numerical simulation of
the transonic flow at Rec = 500,000 around a NACA 0012 airfoil ; DGLR Jahrestagung
- Deutscher Luft- und Raumfahrtkongress, Augsburg, September 2014, DGLR-2014-0028

[2] V. Hermes, I. Klioutchnikov, H. Olivier; Numerical investigation of unsteady wave phe-
nomena for transonic airfoil flow ; Aerospace Science and Technology 25(1) (2013) 224-
233; [doi:10.1016/j.ast.2012.01.009]

[3] V. Hermes, I. Klioutchnikov, H. Olivier; Linear stability of WENO schemes coupled with
explicit Runge-Kutta schemes; Int. J. Numer. Meth. Fluids 69 (2012) 1065-1095; [doi:
10.1002/fld.2626]

[4] http://www.swl.rwth-aachen.de/en/numerical-simulation/shock/

http://www.swl.rwth-aachen.de/en/numerical-simulation/shock/

	Introduction
	Executive Summary
	Summary of Results
	High-Q Club codes

	Application Teams
	CoreNeuron, the Blue Brain Project
	EXASTEEL — Computational Scale Bridging using a FE2TI approach with ex_nl/FE2
	FEMPAR: Scaling Multi-Level Domain Decomposition
	ICON with HD(CP)2 setup 120m
	MPAS-A Extreme Scaling Experiment
	Direct Numerical Simulations of Fluid Turbulence at Extreme Scale with psOpen
	SHOCK: Structured High-Order Computational Kernel

