001     188239
005     20240711101546.0
024 7 _ |2 doi
|a 10.1016/j.ijggc.2010.08.003
024 7 _ |2 wos
|a WOS:000287066700005
037 _ _ |a FZJ-2015-01681
082 _ _ |a 333.7
100 1 _ |0 P:(DE-Juel1)129591
|a Bram, Martin
|b 0
|e Corresponding Author
245 _ _ |a Testing of Nano-Structured Gas Seperation Membranes in the Fuel Gas of a Post-Combustion Power Plant
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2011
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1430226462_26979
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
500 _ _ |a This project "Nano-structured ceramic and metal-supported membranes for gas separation - METPORE" is founded by the Bundeswirtschaftsministerium fur Wirtschaft und Technologie (BMWi), Forderkennzeichen 0327746A. Funding is hereby gratefully acknowledged. The authors would also like to thank H.P. Hesse, K. Hassmann, North Rhine-Westphalia, EnBW, E.ON and RWE for financial support and J. da Costa, D. Uhlmann, University of Queensland, Brisbane, Australia, K. Kroger, DVGW-Forschungstelle, University Karlsruhe, as well as T. Van Gestel, F. Hauler, Ch. Somsen, W. Krumpen, D. Sebold and W. Fischer, Forschungszentrum Julich, for their help in preparation and characterisation of the membranes.
520 _ _ |a Nanostructured gas separation membranes are promising candidates for the separation of CO2 from the flue gas of fossil power plants. Well-defined atomic structures in the range of a few Angstrom are required to separate CO2 from N2 in existing post-combustion power plants, and H2 from CO2 in prospective integrated gasification combined cycle (IGCC) power plants. Today, CO2/N2 and H2/CO2 gas separation with membranes has been demonstrated mainly on a laboratory scale, while less is known about membrane performance and stability under real conditions. To extend the state of knowledge, a test bed was put into operation in the flue gas stream of a hard-coal-fired power plant (EnBW Rheinhafendampfkraftwerk, Karlsruhe), which enabled the long-term functional test of ceramic as well as polymer gas separation membranes for up to 1100 h. For the first time, a CO2 enrichment from 12 vol.% in the flue gas to 57 vol.% in the permeate of a polymer membrane was demonstrated. Due to operating this membrane in direct contact with flue gas, the flow rate was reduced from 0.86 to 0.07 m3/m2 h bar within the first 400 h. This reduction was mainly caused by the deposition of ash particles and gypsum suggesting the need of developing effective membrane protection strategies. In addition, ceramic supported Ti0.5Zr0.5O2 and metal supported Co–SiO2 membranes were tested under the same conditions. Even if demonstration of CO2 gas separation with ceramic membranes requires further modifications of the membrane materials, the long-term exposure in the power plant led to notable results regarding adherence of functional layers and chemical stability.
536 _ _ |0 G:(DE-HGF)POF2-122
|a 122 - Power Plants (POF2-122)
|c POF2-122
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK402
|x 1
|c FUEK402
|a Rationelle Energieumwandlung (FUEK402)
653 2 0 |2 Author
|a Ceramic gas separation membranes
653 2 0 |2 Author
|a Polymer gas separation membranes
653 2 0 |2 Author
|a Post-combustion
653 2 0 |2 Author
|a Coal power plant
653 2 0 |2 Author
|a Carbon dioxide removal
653 2 0 |2 Author
|a Fossil fuel
653 2 0 |2 Author
|a Capture
653 2 0 |2 Author
|a Recovery
700 1 _ |0 P:(DE-HGF)0
|a Brands, K.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Demeusy, L.
|b 2
700 1 _ |0 P:(DE-Juel1)129950
|a Zhao, Li
|b 3
700 1 _ |0 P:(DE-Juel1)129637
|a Meulenberg, Wilhelm Albert
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Pauls, J.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Göttlicher, K. V.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Peinemann, S.
|b 7
773 _ _ |0 PERI:(DE-600)2322650-X
|a WOS:000287066700005
|p 37-48
|t International journal of greenhouse gas control
|v 5
|x 1750-5836
|y 2011
856 4 _ |u https://juser.fz-juelich.de/record/188239/files/FZJ-2015-01681.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:188239
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129591
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129950
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129637
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-111
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|v Efficient and Flexible Power Plants
|x 0
913 1 _ |0 G:(DE-HGF)POF2-122
|1 G:(DE-HGF)POF2-120
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|v Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21