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Abstract

The goal of this thesis is to develop a simulation tool for the calculation and visualization
of the multiplet structure of all atoms across the periodic table. The starting point are self-
consistent calculations in the spherical-potential approximation. For the resulting atomic levels
we calculate the ab-initio Slater parameters that define the electron-electron repulsion term of
the many-body Hamiltonian. We then construct the eigen-states of the Hamiltonian on an open
shell by constructing the multiplet states using the angular momentum ladder operators and,
where necessary, seniority. Finally, we include spin-orbit coupling, using the ab-initio coupling
constants determined from the self-consistent radial potentials.
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Chapter 1

Introduction

1.1. Many-body problem in quantum mechanics

Imagine our solar system: it consists of a heavy sun with eight planets orbiting around. In
classical mechanics, the goal is to calculate the position of each celestial object as a function
of time. The motion of the system is governed by Newton’s second law: F = ma. While
it is almost impossible to solve the classical many-body problem analytically, the numerical
approach is rather straightforward. However, in quantum mechanics, the many-body problem
is a completely different story.

Scaling down to 10−10 meters, it is even philosophically profound that we find similar structures
in atomic systems as in our cosmic systems. An atom, which consists of a heavy nucleus, with
electric charge Ze, is surrounded by N electrons with charge −e. The system here is no longer
governed by Newton’s second law, neither is our goal to compute the “position” of each electron
as a function of time. In quantum mechanics, the position of an electron is no longer well defined.
Instead, what we are looking for is the electrons’ wave function Ψ(r1, r2, . . . , rN ) which is the
solution of the Schrödinger equation1

HΨ = EΨ (1.1)

where H, the Hamiltonian of the system, is given by

H =
N∑
i=1

[
− h̄2

2me
∇2
i −

1

4πε0

Ze2

ri

]
+

N∑
i<j

1

4πε0

e2

|ri − rj |
(1.2)

The term in the first sum represents the kinetic plus potential energy of the ith electron, in
the electric field of the nucleus. The last term, which complicates the behavior of the system,
describes the electron-electron repulsions among all N electrons (the constraint i < j avoids
double counting over electron pairs).

In neither classical nor quantum mechanics, can one solve many-body problems exactly. But in
quantum mechanics, even a numerical solution is extremely difficult to obtain. The difficulty
comes from the fact that a many-body wave function Ψ(r1, r2, . . . , rN ) is an object with dimen-
sion 3N . One must generate a mesh grid with 3N -dimension to represent the wave function

1Strictly speaking, Eqn. (1.1) is called the time-independent Schrödinger equation and the solution
Ψ(r1, r2, . . . , rN ) is the time-independent part of the wave function.



2 Introduction

numerically and such a gigantic data is not possible to be stored on an ordinary hard disk.
Consequently, different methods have been developed to simplify the problem and to treat the
system approximately.

1.2. Atomic units

Since we are going to solve our problems numerically, it is useful to pay attention to the choice
of units. Certainly, we can use SI units, but the scales would be inconvenient. For example, in
SI units, the reduced Planck constant reads h̄ = 1.054572× 10−34J · s, which is a crazy number
from a computational point of view. Hence, we employ atomic units (a.u.), namely,

Length: 1 a0 ≈ 5.2918× 10−11 m

Mass: 1 me ≈ 9.1095× 10−31 kg

Time: 1 t0 ≈ 2.4189× 10−17 s

Charge: 1 e ≈ 1.6022× 10−19 C

which are deliberately chosen such that

h̄ = 1 a2
0met

−1
0

me = 1 me

e = 1 e

4πε0 = 1 a−3
0 met

2
0e2

(1.3)

By adopting atomic units, the Hamiltonian in Eqn. (1.2) simplifies to

H =
N∑
i=1

[
−1

2
∇2
i −

Z

ri

]
+

N∑
i<j

1

|ri − rj |
(1.4)

With the choice of atomic units, distances are given in units of the Bohr radius (a0) and energies
in Hartree (a2

0met
−2
0 )

1 Hartree = 2 Rydberg ≈ 27.2114 eV ≈ 4.3597× 10−18 J (1.5)

From now on, we will keep using atomic units to simplify our equations and discussions.

1.3. Convention of notations

I will try to make the notations in my thesis as consistent as possible to avoid confusions and
to make the discussion clear.

For a many-electron wave function, we use capital psi

Ψ(r1, r2, . . . , rN )

For a one-electron wave function, we use lower case phi

ϕ(r)
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For a Slater determinant, we use upper case phi

Φα1α2···αN (r1, r2, . . . , rN )

Slater determinants are constructed from one-electron wave functions. They are basis functions
of anti-symmetric many-electron wave functions.

Φα1···αN (r1, . . . , rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕα1(r1) ϕα2(r1) · · · ϕαN (r1)
ϕα1(r2) ϕα2(r2) · · · ϕαN (r2)

...
...

. . .
...

ϕα1(rN ) ϕα2(rN ) · · · ϕαN (rN )

∣∣∣∣∣∣∣∣∣ (1.6)

Sometimes you hear people say, “A many-electron wave function is a Slater determinant.” That
is wrong. A many-electron wave function is in general a linear combination of Slater determin-
ants, not just one (although it could be). Nevertheless, this real-space representation of Slater
determinant in Eqn. (1.6) will not appear in our discussion (it only appears in Appendix B).
Slater determinants will be represented in the form of second quantization2 when later we con-
struct our multiplet states.

2Second quantization is a very convenient “algebra” for handling many-body states. A brief discussion of second
quantization is given in Appendix B.





Chapter 2

The shooting and matching methods

2.1. The one-electron problem

To start with, we consider the simplest case: the one-electron or hydrogen-like system. For
N = 1, Eqn. (1.1) (in a.u.) reads [

−1

2
∇2 + V (r)

]
ϕ = Eϕ (2.1)

where V (r) is a spherically symmetric potential (for one-electron case: V (r) = −Z/r). In
spherical coordinates, by separation of variables ϕ(r, θ, φ) = R(r)Y (θ, φ), Eqn. (2.1) splits into
two equations, namely,

Radial equation:
d

dr

(
r2dR

dr

)
− 2r2 [V (r)− E]R = l(l + 1)R (2.2)

Angular equation:
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2
= −l(l + 1)Y (2.3)

where l is a non-negative integer1 known as the orbital angular momentum quantum number.
Now, a three dimensional ordinary differential equation is separated into two equations. They
are called radial equation and angular equation because Eqn. (2.2) has only the dependence
on the radial coordinate r and Eqn. (2.3) has only the dependence on the angular coordinate
θ and φ. It is very important to realize that Eqn. (2.3) has no dependence on the potential
V (r). Hence Eqn. (2.3) is universal for all spherically symmetric potentials and its analytical
solutions are the well known spherical harmonics [1]. In other words, there is no need to worry
about Eqn. (2.3) since its solutions, the spherical harmonics Ylm(θ, φ) (with l = 0, 1, . . . and
m = −l, . . . , l), are known exactly (see Table A.1). The more difficult task for us is to solve
Eqn. (2.2). In fact, for this simplest one-electron system, the radial part solutions are also known
analytically. As a reference, Table 2.1 lists the first few radial wave functions for hydrogen-like
atoms. A rescaled coordinate ρ = Zr is used in the expressions. Nevertheless, we are going to
solve the radial equation numerically so that we can further deal with the more general case,
the many-electron system.

1In fact, from the separation of variables, there is no evidence that l should be an integer. l could be any
complex number. However, the boundary condition Y (θ, φ) = Y (θ, φ + 2π) and the properties of the Legendre
polynomial require that l must be a non-negative integer.
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Eqn. (2.2) simplifies if we change variables u(r) ≡ rR(r). The radial equation becomes

−1

2

d2u

dr2
+

[
V (r) +

l(l + 1)

2r2

]
u = Eu (2.4)

with boundary conditions: u(r) ∝ rl+1 as r → 0 and u(r) ∝ exp (−
√
−2Er) as r →∞.

Eqn. (2.4) is identical in form to the one-dimensional Schrödinger equation, except that we have
an extra “centrifugal” term [l(l + 1)/2r2] in addition to the external potential. Our task is to
solve this equation for u(r) and determine the allowed energies E.

Table 2.1.: The first few analytical radial wave functions unl(r) for hydrogen-like atoms with

eigen-energies En = − Z2

2n2 (Hartree). A rescaled coordinate ρ = Zr is used to simplify
the expressions and the radial coordinates r are in units of Bohr radius (a.u.).

u10 = 2
√
Zρ exp (−ρ)

u20 =
1√
2

√
Zρ

(
1− 1

2
ρ
)

exp (−ρ/2)

u21 =
1√
24

√
Zρ2 exp (−ρ/2)

u30 =
2√
27

√
Zρ

(
1− 2

3
ρ+

2

27
ρ2
)

exp (−ρ/3)

u31 =
8

27
√

6

√
Zρ2

(
1− 1

6
ρ
)

exp (−ρ/3)

u32 =
4

81
√

30

√
Zρ3 exp (−ρ/3)

u40 =
1

4

√
Zρ

(
1− 3

4
ρ+

1

8
ρ2 − 1

192
ρ3
)

exp (−ρ/4)

u41 =

√
5

16
√

3

√
Zρ2

(
1− 1

4
ρ+

1

80
ρ2
)

exp (−ρ/4)

u42 =
1

64
√

5

√
Zρ3

(
1− 1

12
ρ
)

exp (−ρ/4)

u43 =
1

768
√

35

√
Zρ4 exp (−ρ/4)

2.2. Logarithmic grid

We are now in a position to solve the one-dimensional ordinary differential equation in (2.4)
numerically. It is often convenient to solve problems on uniform grids. However, the curvature2

of the wave function indicates that the function u(r) oscillates faster if r goes smaller. This
suggests us to take more points for small r but fewer for large r. For instance, Fig. 2.1 plots the
exact wave functions from Table 2.1 with principal quantum number n = 4 for three hydrogen-
like atoms. These plots demonstrate that the smaller r goes, the stronger is the oscillation of the

2The second derivative u′′ = −2[E − V (r)− l(l + 1)/2r2]u.
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function u(r). And the wave functions are attracted more closely to the nucleus with increasing
nuclear charge Z. Many grid points will be wasted to sample the non-fruitful outer regions
where the wave function is almost zero (see Fig. 2.1c). Therefore, an adaptive grid with higher
resolution close to the nucleus is desired.
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(c) Z = 3

Figure 2.1.: Plots of exact solutions for a few hydrogen-like wave functions with principal
quantum number n = 4. (a) wave functions of Z = 1; (b) wave functions of Z = 2;
(c) wave functions of Z = 3. The plots demonstrate the smaller r goes, the stronger
is the oscillation of the function u(r). And the wave functions are attracted more
closely to the nucleus with increasing nuclear charge Z.

Our choice is to use a logarithmic grid3 [2], 0 < r0 < r1 < · · · < rn−1 <∞, where

ri =
1

Z
exi or equivalently ρi = exi (2.5)

r0 rn−1

and x is a uniformly distributed grid

xi = x0 + i∆x (2.6)

x0 xn−1

The advantage of this logarithmic grid will be clear in a short while. First, we introduce a
rescaled quantity4 ũ ≡ u/

√
r. Recall our analytical solutions in Table 2.1, now instead of unl(r),

we give the relations between ũnl and x in Table 2.2.

If we compare Table 2.1 and Table 2.2 carefully, we can find that in the previous formulas, the
radial coordinates r are always scaled by a factor of Z, so are the plots in Fig. 2.1. But with
the transformed coordinate x, we no longer have this horizontal scaling and this helps us better
work with heavy nuclei. Meanwhile, the transformed coordinate x “magnifies” the inner region
while shrinks the outer. As shown in Fig. 2.2, we plot the rescaled wave functions with (again)
principal quantum number n = 4 for the three hydrogen-like atoms. In contrast to Fig. 2.1, the
three plots are identical except for a vertical scaling factor Z. The inner regions are magnified
clearly and the less important outer regions are reduced.

3The logarithmic grid is not the unique choice. One can use any adaptive grid as long as it can properly
represent the wave function. But the logarithmic grid uses a change of variable technique and it is very elegant.

4Don’t be confused with the rescalings. As a remark, the relation among R, u and ũ is the following: R(r) ≡
u(r)/r ≡ ũ(r)/

√
r.
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Table 2.2.: The first few rescaled radial wave functions ũnl(x) for hydrogen-like atoms with
atomic number Z. The coordinates x are the logarithmic transformations from the
radial coordinate r.

ũ10 = 2 Zex/2 exp (−ex)

ũ20 =
1√
2

Zex/2
(

1− 1

2
ex
)

exp (−ex/2)

ũ21 =
1√
24

Ze3x/2 exp (−ex/2)

ũ30 =
2√
27

Zex/2
(

1− 2

3
ex +

2

27
e2x
)

exp (−ex/3)

ũ31 =
8

27
√

6
Ze3x/2

(
1− 1

6
ex
)

exp (−ex/3)

ũ32 =
4

81
√

30
Ze5x/2 exp (−ex/3)

ũ40 =
1

4
Zex/2

(
1− 3

4
ex +

1

8
e2x − 1

192
e3x
)

exp (−ex/4)

ũ41 =

√
5

16
√

3
Ze3x/2

(
1− 1

4
ex +

1

80
e2x
)

exp (−ex/4)

ũ42 =
1

64
√

5
Ze5x/2

(
1− 1

12
ex
)

exp (−ex/4)

ũ43 =
1

768
√

35
Ze7x/2 exp (−ex/4)
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(b) Z = 2
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ũ42(x)
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Figure 2.2.: The rescaled wave functions with principal quantum number n = 4 for three
hydrogen-like atoms on the transformed grid x. (a) wave functions of Z = 1; (b)
wave functions of Z = 2; (c) wave functions of Z = 3. The three plots are identical
except for a vertical scaling factor Z. The inner regions are magnified clearly and
the less important outer regions are reduced.

The original problem u on the radial coordinate r can be easily transformed to the rescaled
problem ũ on the transformed coordinate x by the change of variable technique. The idea is to
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replace the second derivative d2u/dr2 in Eqn. (2.4) in terms of d2ũ/dx2:

d2u

dr2
= −1

4
r−3/2ũ+ r−3/2d

2ũ

dx2
(2.7)

Substituting Eqn. (2.7) into Eqn. (2.4), we obtain

− 1

2

d2ũ

dx2
+

[
r2V (r) +

1

2

(
l +

1

2

)2
]
ũ = r2Eũ (2.8)

This is our transformed problem. Now, instead of solving Eqn. (2.4) directly, we solve this
transformed equation in (2.8). This logarithmic transformation is a key to obtaining accurate
numerical solutions.

2.3. Numerov’s method

The next immediate question is: how to discretize the second derivative in Eqn. (2.8) so that
we can implement numerical integrations in our computer program. Perhaps the simplest way
is to write this second derivative in the finite-difference form:

d2ũ

dx2
≈ ũi+1 − 2ũi + ũi−1

∆x2
(2.9)

This discretization is perfectly valid and we can integrate Eqn. (2.8) numerically with 2nd order
accuracy. Nevertheless, there exists a very smart trick which allows us to obtain a 4th order
accurate solution with almost the same amount of computational effort. This trick is called
Numerov’s method.

If we take a close look at Eqn. (2.9), we get higher order terms:

d2ũ

dx2
=
ũi+1 − 2ũi + ũi−1

∆x2
− 1

12
ũ

(4)
i ∆x2 +O(∆x4) (2.10)

But the fourth derivative ũ
(4)
i can be also written in the finite-difference form:

d2ũ

dx2
=
ũi+1 − 2ũi + ũi−1

∆x2
− 1

12

ũ
′′
i+1 − 2ũ

′′
i + ũ

′′
i−1

∆x2
∆x2 +O(∆x4) (2.11)

Here comes the smart trick, instead of treating the second derivative ũ
′′
i in Eqn. (2.11) numer-

ically, we can simply replace the ũ
′′
i by the relation from the original ODE in (2.8):

ũ
′′
i = −2k2

i ũi (2.12)

where,

k2
i ≡ r2

iE − r2
i V (ri)−

1

2

(
l +

1

2

)2
(2.13)

What remains are simply substitutions. We substitute Eqn. (2.12) into Eqn. (2.11) and then
substitute Eqn. (2.11) into Eqn. (2.8), we obtain the following relation:

ũi±1 =
(2− 5∆x2

3 k2
i )ũi − (1 + ∆x2

6 k2
i∓1)ũi∓1

1 + ∆x2

6 k2
i±1

(2.14)
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Eqn. (2.14) is a simple 3-point recursion: with the knowledge of ũi−1 and ũi, we can compute
ũi+1 easily (or from the other direction: to compute ũi−1 from ũi and ũi+1). We are now facing
two questions:

1. How do we choose the “starting points”, say, ũ0 and ũ1?

2. The parameter k2
i has a dependence on the energy E, which is so far unknown to us. How

do we determine this energy?

Keep those two questions in mind and we will discuss them in detail in the following section.

2.4. The two-sided shooting and matching

First of all, let’s define our grid on which we solve our numerical problem:{
rmin =

0.0001

Z
; rmax = 50.0; ∆x = 0.002;

}
(2.15)

The minimum of the radial grid rmin depends on the atomic number Z, because the higher the
nuclear charge, the closer the electron wave function will be attracted to the origin. We cannot
take rmin = 0 as xmin = ln (Zrmin) will be −∞. The maximum of the radial grid is a constant
rmax = 50.0. This consideration is from the fact that the size of each atom will be roughly the
same after self-consistent calculations.5 Please notice that we define ∆x instead of ∆r, because
the grid xi is uniformly spaced whereas the spacing ∆r is not a constant.6

Let’s start with the first question we had in our last section: the initialization of the wave
functions. We initialize our wave functions according to their asymptotes (referring to the
boundary conditions in Eqn. (2.4)):

ũ(r) ∝ rl+1/
√
r as r → 0 (2.16)

ũ(r) ∝ e−βr/
√
r as r →∞ (2.17)

where β =
√
−2E. We perform the numerical integrations from both the forward and the

backward directions.7 The corresponding initializations are summarized in Table 2.3. One
might worry about the sign of the energy E as a positive energy will make the square root
imaginary. But we will not work with positive energies as we are interested only in the bounded
states whose energies are always below zero. A positive energy will result in a scattering state
which is not of our concern here.

Be careful there is a pitfall in the backward initialization. Let’s say we take rn−1 = 50 and
E = −300. The term e−βrn−1 will have a value approximately 1.26 × 10−532, which is such a
small number that cannot be represented by a double precision floating point number. As a
result, this initialization will return us 0. But if ũn−1 and ũn−2 are zeros, the resulting ũn−3,
ũn−4, . . . from the integration in Eqn. (2.14) will all become zeros. And of course this is not

5The self-consistent calculation will be discussed in a later chapter. By saying the size of an atom, we mean
the distribution range that is covered by the significant part of the electron wave functions.

6As a reference, number of grid points #: Z = 1 → # = 6563; Z = 10 → # = 7713; Z = 100 → # = 8865.
7One could also implement a one-sided only integration. However, because of the numerical instability, the

solution will diverge out quickly. A two-sided integration is perhaps the best approach to minimize the effect of
numerical instability.
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Table 2.3.: Wave function initializations for the forward and the backward directions.

Initialization

Forward
ũ0 = rl+1

0 /
√
r0

ũ1 = rl+1
1 /
√
r1

Backward
ũn−1 = e−βrn−1/

√
rn−1

ũn−2 = e−βrn−2/
√
rn−2

what we wanted. To overcome this problem, we should keep doing the initialization for ũn−3,
ũn−4, . . . until we meet the first ũi which is nonzero. And this ũi and the next ũi−1 will be
our starting points for the backward integrations. Actually the same argument applies to the
forward initialization. If r0 goes extremely small, ũ0 will also have an arithmetic underflow
problem. However, unlike the exponential term in the backward initialization, this value will
not drop to zero that quickly. In our practical problems, we do not need to worry about the
underflow problems in the forward direction and can simply assign the initial values to ũ0 and
ũ1.

There is one important hidden message in Eqn. (2.14): If any two adjacent points (not ne-
cessarily the end ones) are given, the entire wave function can be reconstructed. This is the
underlying principle of how one should match the wave functions from the forward and backward
integrations. Ideally, if E is an eigen-energy, the resulting wave functions from the forward and
backward integrations will be identical (up to a normalization8 factor). On the other hand, if E
is not an eigen-energy, the wave functions will not match. To check whether two wave functions
matched or not, we do not compare the entire wave functions (they will never match due to
numerical instability). What we should match instead are two adjacent points on the two wave
functions. As we mentioned before, if the solutions agree in two points, in principle they will
agree everywhere. But which two points do we compare? Apparently, those two points should
not be too close to the boundaries. Because of numerical instability, the wave functions will
diverge out quickly if integrating into classically forbidden regions. A good choice of these two
points could be around the classical turning point. A classical turning point is the position where
the energy of the electron is equal to the potential9 E = V (r). Beyond the classical turning
point, the electron reaches the classically forbidden region. And inside this region, the electron
wave function will decay exponentially and no further node10 will be created. Our matching
points rM1 and rM2 (they are adjacent) are taken such that E ≥ V (rM1) and E < V (rM2) (see
Fig. 2.3). A so called matched wave function satisfies the following criterion,∣∣ũF1ũB2 − ũF2ũB1

∣∣ < ε (2.18)

where ε is a small tolerance, say, ε = 10−8. The subscripts “F” and “B” denote whether the wave
function comes form the forward integration or from the other direction. One might ask why
don’t we simply compare the two points such that |ũF1 − ũB1| < ε and |ũF2 − ũB2| < ε. But we

8Normalization of wave functions will be discussed in the later section.
9The true classical turning point should be at E = Veff(r) where Veff(r) = V (r) + l(l+1)

2r2
. But it is better to

only use V (r) here since Veff(r) will introduce an additional root near the origin.
10A node is a point along the wave function where the wave function goes through zero. See Fig. 2.1 and

Fig. 2.2 for example.
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should understand that the two wave functions from the forward and backward directions need
to match only up to a normalization factor. The initialization in Table 2.3 does not guarantee
that the wave functions from the two directions will have the same scaling factor.
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Figure 2.3.: Two matching points when E = −0.4 with potential V (r) = −1/r on a sample grid.

As an important note, instead of comparing the two points, many people would like to compare
the first derivatives of the two wave functions at a matching position. That is also very intuitive
as a matched wave function should be “smooth”. However, comparing the first derivatives will
introduce additional numerical error unless the derivative is calculated with a formula consistent
with the Numerov’s integration. The comparison of two adjacent points does that automatically,
which will give us a 4th order accuracy that is consistent with the Numerov’s method.

So, everything is ready. What remains is to determine the electron energy E. Believe it or not,
the determination of E is a trial-and-error approach. As demonstrated in Fig. 2.4, we first make
a guess to the energy E = −0.6. Then we perform the integration (the so called shooting) and
find out the wave functions at the matching point do not match and the guessed energy was
too low. Next we increase our energy E = −0.4 and realize the energy is too high this time.
Finally, by trial-and-error, we lock on the eigen-energy which in this case should be E = −0.5.
This trial-and-error strategy is actually the spirit of the shooting and matching method.
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(a) E = −0.6
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(b) E = −0.4
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(c) E = −0.5

Figure 2.4.: Forward integration and backward integration matching for the wave function u10

of a hydrogen atom (Z = 1). It is really a trial-and-error strategy to determine the
eigen-energy.
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2.5. The bisection method

Suppose we have our program codes ready, our next job is to modify the parameter E and
run the program over and over to find out the possible eigen-energies and the corresponding
eigen-functions. This is a rather tedious job. But an experienced programmer (like us) will soon
notice that we could let the machine do this trial-and-error process automatically.

This automation procedural is called the bisection method. The idea is to start from two initial
guesses Elow and Eup, and locate the solution11 in between. We provide the bisection algorithm
for identifying the eigen-states in Algorithm 2.1.

Algorithm 2.1 Bisection method

1: function Bisection(Elow, Eup)
2: eigenlow ← Shoot(Elow)
3: eigenup ← Shoot(Eup)
4: matchlow ← eigenlow.match
5: matchup ← eigenup.match
6: nodelow ← eigenlow.node
7: nodeup ← eigenup.node
8: if nodeup − nodelow = 1 and matchup ∗matchlow < 0 then
9: loop

10: E ← (Elow + Eup)/2
11: eigen← Shoot(E)
12: match← eigen.match
13: if |match| < ε then . Eigen-state found
14: return eigen
15: else
16: if match ∗matchlow > 0 then
17: Elow ← E
18: matchlow ← match
19: else if match ∗matchup > 0 then
20: Eup ← E
21: matchup ← match
22: else
23: return false
24: else
25: return false

The mysterious function Shoot() in Algorithm 2.1 is basically the initialization and Numerov
integration that we discussed in previous sections. The function Shoot() takes an argument E
and returns an object which contains all the essential information of the resulting wave function,
including the energy, the normalized wave function, number of nodes, the matching quality (as
defined in Eqn. (2.18)), etc. The difference between the number of nodes from Elow and Eup

determines the number of eigen-states between them. As a remark, there is a close relation

11It is very likely that more than one eigen-states are in between Elow and Eup. But the algorithm for finding
all of them will be more complicated and one has to be more careful for that situation. For simplicity, here we
only provide an algorithm for locating one eigen-state.
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among the number of nodes, the principal quantum number and the orbital angular momentum
quantum number: n = node+ l + 1.

2.6. Normalizing the wave function

In the previous sections, we mentioned the wave function normalization. By saying normalizing
a wave function, it means to find a factor A such that

A

∫ ∞
0

dr |u|2 = 1 (2.19)

The re-assignment u←
√
Au normalizes the wave function.

It is now a matter of how to evaluate this integral numerically. First of all, it would be convenient
if we transform our problem onto the uniform grid x. By change of variable dr = (dr/dx)dx,
Eqn. (2.19) becomes

A

∫ ∞
0

dx r |u|2 = 1 (2.20)

There are three standard numerical methods to compute the definite integrals. The first one,
which is the simplest, will be exact if the integrand f(x) is a piecewise constant function. It is
called the rectangle rule. ∫ xn−1

x0

dx f(x) ≈ ∆x
n−2∑
i=0

f(xi) (2.21)

The second one, the trapezoidal rule, will be exact if the integrand is piecewise linear.∫ xn−1

x0

dx f(x) ≈ ∆x

2

n−2∑
i=0

[f(xi) + f(xi+1)] (2.22)

The next order is quadratic. The Simpson’s rule does an interpolation on each 3-point stencil.
It is exact when the integrand is piecewise quadratic. In order to concatenate every 3-point
stencil together, it requires the total number of the grid points to be odd. The Simpson’s rule is
often more accurate than the rectangle and trapezoidal rules. Here I use (+2) in the summation
to denote the index i jumps in steps of 2.

∫ xn−1

x0

dx f(x) ≈ ∆x

3

f(x0) + 4

n−2∑
i=1(+2)

f(xi) + 2

n−3∑
i=2(+2)

f(xi) + f(xn−1)

 (2.23)

To compare those three methods, we calculate the numerical results for the following sample
integration (whose analytical solution can be computed easily):∫ xn−1

x0

dx r sin (x) (2.24)

on a few grids with different spacing:{
rmin = 1.0; rmax = 50.0; ∆x = 100, 10−1, . . . , 10−6;

}
(2.25)
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We plot the relative error against the grid size ∆x on a log-log scale for the three methods,
rectangle, trapezoidal and Simpson. The results are shown in Fig. 2.5. In the log-log scale
plot, the slope of each curve indicates the order of accuracy of each method. Apparently, the
Simpson’s rule gives the highest order among the three methods. There is a “turning point”
on the Simpson’s curve around ∆x = 10−3, since the solution hits the machine precision. In
our shooting method problems, we have a grid with ∆x = 0.002 and the Simpson’s rule is our
choice.
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Figure 2.5.: Numerical integrations for f(x) = r sin (x) using rectangle, trapezoidal and
Simpson’s rules. This figure plots the relative error against the grid size ∆x on
a log-log scale. The slope of each curve indicates the order of the accuracy.

2.7. Numerical and exact eigen-energy comparison

To confirm the correctness of our results and to check the accuracy, we can compare our numerical
solutions with the analytical eigen-energies of hydrogen-like atoms. The eigen-energies of a
hydrogen-like atom is given by (in Hartree)

En = − Z
2

2n2
(2.26)

We selected a few one-electron ions for comparison, namely H (Z = 1), C5+ (Z = 6), Fe25+

(Z = 26), Ag46+ (Z = 47) and U91+ (Z = 92). Please notice that they are not neutral atoms,
but with only one electron inside (this is what we are able to deal with up to this stage).
Table 2.4 lists the numerical and exact eigen-energies for the selected elements. Energies are
given in units of Hartree (a.u.). The absolute error eabs = |Enum − Eexa| and the relative error
erel = |(Enum − Eexa)/Eexa| are listed accordingly. The symbols in column 2 are the orbital
names. For instance, 2p is an orbital with principal quantum number n = 2 and orbital angular
momentum quantum number l = 1. A direct mapping between l and its “name” is given below:

l 0 1 2 3 4 5

orbital name s p d f g h
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With this nicely tabulated result, we conclude our one-electron system computation in this
section. From the next chapter, we will start to work on with more complicated, more realistic
and of course more exciting cases, the many-electron systems.

Table 2.4.: The numerical and exact eigen-energies for the selected one-electron atoms. Energies
are given in units of Hartree (a.u.).

Elem Orbital Numerical Exact Abs Error Rel Error

H 1s −0.500000 −0.500000 0.000000 0.000000

C 1s −18.000002 −18.000000 0.000002 0.000000
2s −4.499999 −4.500000 0.000001 0.000000
2p −4.500001 −4.500000 0.000001 0.000000

Fe 1s −338.000032 −338.000000 0.000032 0.000000
2s −84.499984 −84.500000 0.000016 0.000000
2p −84.500012 −84.500000 0.000012 0.000000
3s −37.555556 −37.555556 0.000000 0.000000
3p −37.555556 −37.555556 0.000000 0.000000
3d −37.555555 −37.555556 0.000001 0.000000
4s −21.125000 −21.125000 0.000000 0.000000

Ag 1s −1104.500105 −1104.500000 0.000105 0.000000
2s −276.124947 −276.125000 0.000053 0.000000
2p −276.125039 −276.125000 0.000039 0.000000
3s −122.722225 −122.722222 0.000003 0.000000
3p −122.722225 −122.722222 0.000003 0.000000
3d −122.722219 −122.722222 0.000003 0.000000
4s −69.031250 −69.031250 0.000000 0.000000
4p −69.031250 −69.031250 0.000000 0.000000
4d −69.031250 −69.031250 0.000000 0.000000
5s −44.180001 −44.180000 0.000001 0.000000

U 1s −4232.000404 −4232.000000 0.000404 0.000000
2s −1057.999798 −1058.000000 0.000202 0.000000
2p −1058.000151 −1058.000000 0.000151 0.000000
3s −470.222232 −470.222222 0.000010 0.000000
3p −470.222232 −470.222222 0.000010 0.000000
3d −470.222210 −470.222222 0.000012 0.000000
4s −264.500000 −264.500000 0.000000 0.000000
4p −264.500000 −264.500000 0.000000 0.000000
4d −264.500000 −264.500000 0.000000 0.000000
4f −264.500000 −264.500000 0.000000 0.000000
5s −169.280006 −169.280000 0.000006 0.000000
5p −169.280006 −169.280000 0.000006 0.000000
5d −169.280006 −169.280000 0.000006 0.000000
5f −169.280000 −169.280000 0.000000 0.000000
6s −117.555553 −117.555556 0.000003 0.000000
6p −117.555553 −117.555556 0.000003 0.000000
7s −86.367345 −86.367347 0.000002 0.000000



Chapter 3

Self-consistent field approximation

3.1. The many-electron problem

Suppose we have an Fe atom. It consists of a positively charged heavy nucleus and 26 negatively
charged electrons. Unlike the one-electron systems we had before, each of those 26 electrons
will not only feel the attraction from the nucleus, but will also experience the repulsions from
all the other electrons. The interactions among electrons are rather complicated. But the
real challenge comes from how one should represent the many-body wave function numeric-
ally. For 26 electrons, we have the wave function Ψ(r1, r2, . . . , r26), or in Cartesian coordinates
Ψ(x1, y1, z1, x2, y2, z2, . . . , x26, y26, z26). This wave function has a dimension 3 × 26 = 78. To
get an impression how crazy this dimension is, let’s take a “toy” grid with 10 grid points per
dimension. Then the total number of points on our toy grid will be 1078. What does it imply?
If the wave function on each point is a double precision floating point number, it would require
us 64× 1078 bits to store the wave function on just this toy grid. Not impressive enough? Let’s
say if one bit could be stored on just one atom, 64× 1078 atoms is already beyond the amount
of substances in the observable universe! So are you still thinking about storing it on your small
laptop?

Nobody was able to store such a wave function on a hard disk. But that is not the end of our
story. An important step to get rid of this huge dimension is to make an ansatz: the many-body
solution can be written as products of one-particle wave functions

Ψ(r1, r2, . . . , rN ) ≈ ϕ1(r1)ϕ2(r2) . . . ϕN (rN ) (3.1)

It is important to notice that Eqn. (3.1) is really an approximation. It assumes that electrons are
distinguishable which is, however, not true. The famous Pauli exclusion principle is not included
here as the wave function given by Eqn. (3.1) is not anti-symmetric.1 Therefore, we must take
extra care for the electron configurations, i.e. how one puts electrons onto different orbitals.
But with Eqn. (3.1), a “3N dimensional” wave function is decomposed into N “3 dimensional”
wave functions. This is really a great milestone. We are not anymore embarrassed by the non-
handleable gigantic wave functions. Instead, we have N lovely 3-dimensional one-electron wave

1An alternative ansatz that includes the anti-symmetric property of electron wave functions is the Slater de-
terminant formulation, which leads to the Hartree-Fock method of solving many-electron problems. Our methods
here are based on the density functional theory which starts from the Kohn-Sham equation and Eqn. (3.1) will
be the right ansatz for us to use.
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functions. But that is not good enough. Because those N electrons are coupled to each other.
In order to handle those N wave functions separately, one must think about a way to decouple
them. Recall our Schrödinger equation, for general N , Eqn. (1.1) (in a.u.) reads

N∑
i=1

[
−1

2
∇2
i −

Z

ri

]
+

N∑
i<j

1

|ri − rj |

Ψ = EΨ (3.2)

By analyzing this equation, we easily find out that the second term in the curly brace is causing
the trouble that all electrons are coupled together. If one could decouple this electron-electron
interaction, the problem will become as easy as for the one-electron case. That is where the
self-consistent field approximation plays an important role. It suggests us to approximate the
electron-electron repulsion term by a spherically symmetric mean-field potential

N∑
i<j

1

|ri − rj |
≈ VHartree(r) (3.3)

This VHartree(r) is called the Hartree potential. Under this mean-field approximation, the N
electrons are not coupled anymore. The equation{

N∑
i=1

[
−1

2
∇2
i −

Z

ri

]
+ VHartree(r)

}
Ψ = EΨ (3.4)

can be decomposed into[
−1

2
∇2 + Vext(r) + VHartree(r)

]
ϕi = Eiϕi for i = 1, 2, · · · , N (3.5)

where Vext(r) = −Z/r is the external potential from the nucleus. In fact, a so called exchange-
correlation potential Vxc(r) should be added into the Hamiltonian to include the exchange-
correction effect [2] from the electrons:[

−1

2
∇2 + Vext(r) + VHartree(r) + Vxc(r)

]
ϕi = Eiϕi for i = 1, 2, · · · , N (3.6)

This is the Kohn-Sham equation [3] that we are going to solve. If we compare Eqn. (3.6) with
Eqn. (2.1), we immediately see that they are exactly the same except the potential here has
three terms. This is how we break down a non-solvable many-electron problem into solvable
one-electron problems. If you still remember how we solved the one-electron case in the previous
chapter, we used a separation of variable technique to separate the 3-dimensional ODE into a
radial equation and an angular equation. While the solutions for the angular equation are known
already, our task is to solve the radial equation:

−1

2

d2ui
dr2

+

[
Vext(r) + VHartree(r) + Vxc(r) +

l(l + 1)

2r2

]
ui = Eiui for i = 1, 2, · · · , N (3.7)

with the same boundary conditions: u(r) ∝ rl+1 as r → 0 and u(r) ∝ exp (−
√
−2Er) as r →∞.

Again, Eqn. (3.7) is identical to Eqn. (2.4) except the potential for the many-electron case is
more complicated. While Vext(r) is given already, the two other potentials VHartree(r) and Vxc(r)
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remain unknown to us. But suppose we knew the exact expression for those two potentials, we
would be able to solve Eqn. (3.7) as easily as we did in the previous chapter. Unfortunately, we
do not have them explicitly. So one might complain: how are we supposed to solve a differential
equation without knowing the differential equation? This is quite a reasonable question and the
answer is: No, we cannot solve it within one step like what we did for the one-electron case.
But with a self-consistent iterative scheme we would be able to achieve the solution. The idea
is the following:

Since we do not know VHartree(r) and Vxc(r), we guess. We start from an initial guess of the
two unknown potentials, say, V 0

Hartree(r) = 0 and V 0
xc(r) = 0.2 From this initial guess, we obtain

a solution {u0
i (r)}.3 Next, we use this solution to update V 1

Hartree(r) and V 1
xc(r) and obtain a

new solution {u1
i (r)}. This loop continues until V k

Hartree(r) and V k
xc(r) (and consequently the

solution {uki (r)}) converge. Fig. 3.1 illustrates the iteration scheme of the self-consistent field
computation. The loop starts from an initial potential and continues updating the potential
until the solution converges. That is why we call this scheme the self-consistent method: the
wave functions produce the potential and the potential produces wave functions, which is self-
consistent.

initial
potential

compute
{ui(r)}

compute
VHartree(r)
Vxc(r)

update
VHartree(r)
Vxc(r)

converged? stop

no

yes

Figure 3.1.: Flow chart of self-consistent field iteration. The loop starts from an initial potential
and continues updating the potential until the solution converges.

Most of the steps in Fig. 3.1 are clear to us. For example, the computation from a given potential
to the wave functions has been discussed thoroughly in the previous chapter. What we need to
do is simply replacing V (r) in Eqn. (2.4) by Vext(r) + VHartree(r) + Vxc(r). The convergence test
in the “diamond” could be checked by comparing the old total energy with the new total energy
of the system.4 What still remains unclear to us is the step from a set of given wave functions
to obtaining the new potentials VHartree(r) and Vxc(r).

3.2. The Hartree potential

The computation of the Hartree potential requires not too much knowledge from quantum
mechanics but almost purely electrostatics as you might have learned in your school. The
keywords are: charge density, charge, electric field and electric potential. As a brief review, the
relations among those quantities are summarized below.

Imagine we have a charged object with charge density ρ(r), the total charge enclosed in volume

2Zero Hartree and zero exchange-correlation potentials imply the electrons are not interacting, which will result
in the same solutions as for the one-electron problems.

3Here the notation {ui(r)} denotes the complete set of ui(r) for i = 1, 2, . . . , N . With a superscript k, {uki (r)}
indicates the solution at the k-th iteration.

4Computation of the total energy will be discussed in the later section.
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V is the volume integration over the charge density

Qenc =

∫
V
d3r ρ(r) (3.8)

For a spherical symmetrically distributed charge density ρ(r), the total charge enclosed in a
sphere with radius r can be integrated using spherical coordinate system

Q(r) =

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ r

0
dr′ r′2 ρ(r′) = 4π

∫ r

0
dr′ r′2 ρ(r′) (3.9)

The electric field created by the enclosed charge can be computed easily (recall Coulomb’s law)

E(r) =
1

4πε0

Q(r)

r2
r̂

in a.u.
==

Q(r)

r2
r̂ (3.10)

Meanwhile, the electric field is the negative gradient of the electric potential E(r) = −∇V (r)
and V (r →∞) ≡ 0. Hence,

V (r) = −
∫ r

∞
dr′E(r′) · r̂ =

∫ ∞
r

dr′E(r′) (3.11)

Now let’s do a small exercise:

Question: Suppose we have a uniformly charged sphere (Fig. 3.2) of radius R with charge
density ρ(r) = 3

4πR3 . What is the electric potential it creates?

Figure 3.2.: A uniformly charged sphere of radius R with charge density ρ(r) = 3
4πR3 .
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Solution: Since there is a discontinuity on the sphere’s surface, we’d better solve the problem
casewise.

For r > R,

Q(r) = 4π

∫ R

0
dr′ r′2 ρ(r′) = 1 (3.12)

E(r) =
Q(r)

r2
=

1

r2
(3.13)

V (r) =

∫ ∞
r

dr′E(r′) =
1

r
(3.14)

For r ≤ R,

Q(r) = 4π

∫ r

0
dr′ r′2 ρ(r′) =

r3

R3
(3.15)

E(r) =
Q(r)

r2
=

r

R3
(3.16)

V (r) =

∫ ∞
r

dr′E(r′) =

∫ R

r
dr′

r′

R3
+

∫ ∞
R

dr′
1

r′2
=

1

2R
− r2

2R3
+

1

R
(3.17)

This is basically the recipe how one calculates the electric potentials. Of course, electron wave
functions are not uniformly charged spheres. They usually spread out to infinity and have nodes
in between. But how should a normalized wave function “look like” analogous to a uniformly
charged sphere? The radial wave function should have the following piecewise constant definition
(sorry for the confusion between the wave function R(r) and the radius R):

R(r) =


√

3

R3
if r ≤ R

0 if r > R

(3.18)

Notice that the radial wave function R(r) is normalized∫ ∞
0

dr′ r′2 |R(r′)|2 =

∫ R

0
dr′ r′2

3

R3
+

∫ ∞
R

dr′ r′2 0 = 1 (3.19)

Meanwhile, the angular wave function Y (θ, φ) is always normalized∫ 2π

0
dφ

∫ π

0
dθ sin θ |Y (θ, φ)|2 = 1 (3.20)

But if we assume the electron wave function is spherical symmetrically distributed, meaning

Y (θ, φ) = a constant =
√

1
4π , we get the relation between the charge density and the radial

wave function:5

ρ(r) = |R(r)Y (θ, φ)|2 =
1

4π
|R(r)|2 (3.21)

5But wait, shouldn’t the charge density of an electron be negative? Yes, that is true. But as we are always
working with electrons, we use a convention that charge units are negative. The same idea applies to the electric
potential in the Schrödinger equation, which is the electric potential energy per negative charge.
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If we have N electrons, the charge density (or electron density) is given by

ρ(r) =
N∑
i=1

|ϕi(r, θ, φ)|2 =
1

4π

N∑
i=1

|Ri(r)|2 (3.22)

Our Hartree potential (finally we come back to our main issue!) is simply the electric potential
generated by this electron density, for which we have already shown the routine of calculation.
Suppose we have our radial wave functions on a grid, a direct relation between VHartree(r) and
{Ri(r)} is the following:

ρ(r) =
1

4π

N∑
i=1

|Ri(r)|2

Q(r) = 4π

∫ r

rmin

dr′ r′2 ρ(r′)

VHartree(r) =

∫ rmax

r
dr′

Q(r′)

r′2
+

N

rmax

(3.23)

The integrals in Eqn. (3.23) can be evaluated numerically from the Simpson’s rule as we discussed
before. But as you might have noticed already, there is a slight difference in the integrations
here. While normally an integral

∫ b
a dr f(r) returns us a “number”, the integral

∫ r
a dr

′ f(r′)
returns us an “array”. But that is not difficult at all. What we need to do is simply to store
each intermediate integrated value while doing the for loop. Now, if we take the radial wave
function in Eqn. (3.18) to compute the Hartree potential according to Eqn. (3.23), the numerical
solution should agree with the analytical solution in Eqn. (3.17) in our exercise. Fig. 3.3 shows
the solution we obtained from numerical integration versus the analytical solution. And yes, the
numerical and analytical solutions happily agree with each other.
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Figure 3.3.: Numerical (Simpson’s rule) and analytical Hartree potentials from a normalized
wave function analogous to a uniformly charged sphere of radius R = 50.
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3.3. The exchange-correlation potential

The exchange-correlation potential is only a subtle correction6 but definitely a key for obtaining
accurate self-consistent solutions. The issue of the exchange-correlation effects comes from the
framework of Kohn-Sham density functional theory (DFT) [3], which exactly maps the many-
electron problem onto equivalent one-electron problems. In practical calculations, the local
density approximation (LDA) is usually used to simplify the computation for the exchange-
correlation potentials. LDA makes an assumption that the electron density ρ(r) is slowly varying.
As a result, the exchange-correlation energy Exc can be expressed in terms of the exchange-
correlation energy density εxc,

7 as

Exc[ρ(r)] =

∫
d3r ρ(r)εxc(ρ(r)) (3.24)

The corresponding exchange-correlation potential is given by

Vxc[ρ(r)] =
δ (ρ(r)εxc(ρ(r)))

δρ(r)
(3.25)

Don’t be scared of those functional formulations. What we will do in the end is simply to input a
spherically symmetric electron density ρ(r) and output the exchange-correlation potential Vxc(r)
(Fig. 3.4). There are a number of density functionals to approximate Vxc(r) from ρ(r). A detailed
discussion can be found in Reference [4]. Here we provide the Ceperley-Alder approximation with
Vosko-Wilk-Nusair parameterisation (CA-VWN) which is the density functional recommended
by Reference [4].

ρ(r)
Local density
approximation

Vxc(r)

Figure 3.4.: Input a spherically symmetric electron density ρ(r) and output the exchange-
correlation potential Vxc(r).

First of all, we introduce two notations

rs(r) =

(
3

4πρ(r)

) 1
3

(3.26)

α =

(
4

9π

) 1
3

(3.27)

As the name implies, the exchange-correlation potential consists of two terms

Vxc(r) = Vx(r) + Vc(r) (3.28)

The exchange term Vx(r) can be computed from the Kohn-Sham-Gaspár approximation:

Vx(rs) = − 1

παrs
(3.29)

6The exchange-correlation potential is roughly one order smaller than the Hartree potential.
7The exchange-correlation energy density εxc(ρ) is the exchange and correlation energy per electron of a uniform

electron gas of density ρ. If there were no local density approximation, we would not be able to compute the
exchange-correlation energy from a uniform electron gas.
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The correlation term Vc(r) from CA-VWN approximation is a bit more complicated:

Vc(rs) = εc(rs)−
A

3

1 + b1r
1/2
s

1 + b1r
1/2
s + b2rs + b3r

3/2
s

(3.30)

where,8

Parameter Paramagnetic

A 0.0310907
b 3.72744
c 12.9352
x0 −0.10498
b1 9.81379
b2 2.82224
b3 0.736412
Q 6.15199

εc(rs) = A

[
ln

rs
X(rs)

+
2b

Q
tan−1 Q

2
√
rs + b

− bx0

X(x2
0)

(
ln

(
√
rs − x0)2

Xi(rs)
+

2(b+ 2x0)

Q
tan−1 Q

2
√
rs + b

)]
and X(rs) = rs + b

√
rs + c.

3.4. Achieving self-consistency

The calculations for both the Hartree potential and the exchange-correlation potential have been
discussed in the last two sections. The effective Kohn-Sham potential

V (r) = Vext(r) + VHartree(r) + Vxc(r) (3.31)

appears much clearer to us now. Our next task is to perform the self-consistent iteration as
illustrated in Fig. 3.1. To update the potential for a next iteration, naively, one would like to
assign:9

V k+1(r)← Vext(r) + V k
Hartree(r) + V k

xc(r) (3.32)

This is probably what most people would expect. However, this assignment normally leads to
no convergence. The solutions will oscillate inside a certain region. Imagine we put electrons
initially too close to each other, in the first step, due to strong repulsions, the electrons will be
pushed very far away. In the next step, because the electrons are sitting too far from each other,
they won’t experience much repulsions and will be attracted back by the nucleus. That is the
picture how the solutions oscillate. To avoid this oscillation, we use a technique called linear
mixing. We assign

V k+1(r)← (1− α)V k(r) + α
(
Vext(r) + V k

Hartree(r) + V k
xc(r)

)
(3.33)

where α is a number between 0 and 1. If α = 1, Eqn. (3.33) will be identical to Eqn. (3.32),
which results in a non-converged solution. But if α = 0, there will be no potential update at all.
The assignment V k+1(r)← V k(r) makes the loop never end. So, a reasonable choice should be
somewhere in between 0 and 1, and an empirical value for α could be around 0.3 to 0.5.

8There are parameters for both paramagnetic and ferromagnetic correlation energies. Here we use only the
paramagnetic parameters since we are ignoring electron spins at this stage.

9Notice that the external potential Vext(r) = −Z/r is independent of iterations.
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3.5. Comparison to NIST calculations

The National Institute of Standards and Technology (NIST) provides a reference for electronic
structure calculations [5], which includes exactly what we are calculating. It provides us an
excellent reference for checking our solutions.

Similar to Table 2.4, we again selected the same elements for comparison, namely H (Z = 1),
C (Z = 6), Fe (Z = 26), Ag (Z = 47) and U (Z = 92). In contrast to Table 2.4, this time
all atoms are neutral. So we reached our goal of calculating many-electron systems. We list
the orbital eigen-energies from our results versus the results from NIST in Table 3.1. Energies
are given in units of Hartree (a.u.). If you watch carefully, there is a subtle difference between
Table 2.4 and Table 3.1 in the second column: Previously, we didn’t have superscripts over
the orbital names. They are the occupation numbers, which means the number of electrons in
each orbital. For example 2p2 means there are 2 electrons sitting in orbital 2p. And a complete
orbital information, like for C: 1s2 2s2 2p2, is called the electronic configuration, which describes
the occupations of all orbitals. The electronic configuration needs to be specified by ourselves
and it has to obey the Pauli exclusion principal. For example, there cannot be more than 2
electrons in an s orbital and no more than 6 electrons in a p orbital.
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Table 3.1.: Comparison of eigen-energies of the occupied orbitals between my results and the
results from NIST for the selected atoms. Energies are given in units of Hartree
(a.u.).

Elem Orbital My results NIST results Abs Error Rel Error

H 1s1 −0.233471 −0.233471 0.000000 0.000000

C 1s2 −9.947725 −9.947718 0.000007 0.000001
2s2 −0.500866 −0.500866 0.000000 0.000000
2p2 −0.199186 −0.199186 0.000000 0.000000

Fe 1s2 −254.225334 −254.225505 0.000171 0.000001
2s2 −29.564863 −29.564860 0.000003 0.000000
2p6 −25.551762 −25.551766 0.000004 0.000000
3s2 −3.360622 −3.360621 0.000001 0.000000
3p6 −2.187521 −2.187523 0.000002 0.000001
3d6 −0.295047 −0.295049 0.000002 0.000007
4s2 −0.197976 −0.197978 0.000002 0.000010

Ag 1s2 −900.324405 −900.324578 0.000173 0.000000
2s2 −129.859749 −129.859807 0.000058 0.000000
2p6 −120.913362 −120.913351 0.000011 0.000000
3s2 −23.678432 −23.678437 0.000005 0.000000
3p6 −20.067624 −20.067630 0.000006 0.000000
3d10 −13.367801 −13.367803 0.000002 0.000000
4s2 −3.223088 −3.223090 0.000002 0.000001
4p6 −2.086598 −2.086602 0.000004 0.000002
4d10 −0.298702 −0.298706 0.000004 0.000013
5s1 −0.157404 −0.157407 0.000003 0.000019

U 1s2 −3689.356876 −3689.355141 0.001735 0.000000
2s2 −639.778647 −639.778728 0.000081 0.000000
2p6 −619.108505 −619.108550 0.000045 0.000000
3s2 −161.118060 −161.118073 0.000013 0.000000
3p6 −150.978963 −150.978980 0.000017 0.000000
3d10 −131.977338 −131.977358 0.000020 0.000000
4s2 −40.528086 −40.528084 0.000002 0.000000
4p6 −35.853321 −35.853321 0.000000 0.000000
4d10 −27.123209 −27.123212 0.000003 0.000000
4f14 −15.027458 −15.027460 0.000002 0.000000
5s2 −8.824083 −8.824089 0.000006 0.000001
5p6 −7.018084 −7.018092 0.000008 0.000001
5d10 −3.866167 −3.866175 0.000008 0.000002
5f3 −0.366535 −0.366543 0.000008 0.000022
6s2 −1.325969 −1.325976 0.000007 0.000005
6p6 −0.822530 −0.822538 0.000008 0.000010
6d1 −0.143184 −0.143190 0.000006 0.000042
7s2 −0.130943 −0.130948 0.000005 0.000038
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3.6. Total energy of the system

While the Kohn-Sham orbital eigen-energies give us a nice description to the atomic systems,
their physical meanings are less obvious (they are only the solutions from our ansatz (3.1)).
Another very important quantity which has a key physical meaning is the total energy of the
system. Naively, one might expect that the total energy of the system Etot is simply the
summation from all eigen-energies of the Kohn-Sham orbitals.

Etot ?=
N∑
i=1

εi (3.34)

That was a close guess, however not quite true. The discrepancy comes from the following
inequalities:

EHartree 6=
N∑
i=1

〈ϕi|VHartree |ϕi〉 (3.35)

Exc 6=
N∑
i=1

〈ϕi|Vxc |ϕi〉 (3.36)

where EHartree is the energy from electron-electron repulsions (Hartree energy) and Exc is the
exchange-correction energy. They are not simply the expectation values of their corresponding
potentials. To get the exact total energy of the system, one has to be more careful:

Ekin =
N∑
i=1

〈ϕi|
1

2
∇2 |ϕi〉 (3.37)

Eext =

N∑
i=1

〈ϕi|Vext |ϕi〉 (3.38)

EHartree =
1

2

∫
d3r ρ(r)VHartree(r) (3.39)

Exc =

∫
d3r ρ(r)εxc(r) (3.40)

where Ekin is the kinetic energy of the electrons, Eext is the energy from the external potential
Vext(r) = −Z/r, and the total energy of the system is given by the summation of those 4 energies

Etot = Ekin + Eext + EHartree + Exc (3.41)

Each term in Eqn. (3.41) can be evaluated explicitly. But taking the derivative in the kinetic
energy (Eqn. (3.37)) introduces unnecessary numerical errors. With a small trick we can get rid
of the Laplacian:

N∑
i=1

εi =
N∑
i=1

〈ϕi|
1

2
∇2 + Vext + VHartree + Vxc |ϕi〉 (3.42)

=

N∑
i=1

〈ϕi|
1

2
∇2 |ϕi〉+

N∑
i=1

〈ϕi|Vext |ϕi〉+

N∑
i=1

〈ϕi|VHartree |ϕi〉+

N∑
i=1

〈ϕi|Vxc |ϕi〉

N∑
i=1

〈ϕi|
1

2
∇2 |ϕi〉 =

N∑
i=1

εi −
N∑
i=1

〈ϕi|Vext |ϕi〉 −
N∑
i=1

〈ϕi|VHartree |ϕi〉 −
N∑
i=1

〈ϕi|Vxc |ϕi〉 (3.43)
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Hence Eqn. (3.41) becomes

Etot =
N∑
i=1

εi −
N∑
i=1

〈ϕi|VHartree |ϕi〉 −
N∑
i=1

〈ϕi|Vxc |ϕi〉+ EHartree + Exc (3.44)

This exactly agrees with the discrepancy we have mentioned in Eqns. (3.35) and (3.36). We
suggest the summation of Kohn-Sham orbital energies as our total energy, then we subtract the
“wrong” terms and put back the correct ones. If we expand Eqn. (3.44) and read carefully, we
have to pay extra attention to the iteration numbers:

Ektot =
N∑
i=1

εki −
∫
d3r ρk(r)V k−1

Hartree(r)−
∫
d3r ρk(r)V k−1

xc (r)

+
1

2

∫
d3r ρk(r)V k

Hartree(r) +

∫
d3r ρk(r)εkxc(r) (3.45)

And this will be our final expression to compute the total energy of the system. To check the
correctness and accuracy of our solutions, we again compare our results with the results from
NIST. The comparison is listed in Table 3.2.

Table 3.2.: Comparison of self-consistent total energies between my results and the results from
NIST for the selected atoms. Energies are given in units of Hartree (a.u.).

Elem My results NIST results Abs Error Rel Error

H −0.445670 −0.445671 0.000001 0.000002

C −37.425762 −37.425749 0.000013 0.000000

Fe −1261.092727 −1261.093056 0.000329 0.000000

Ag −5195.030828 −5195.031215 0.000387 0.000000

U −25658.420765 −25658.417889 0.002876 0.000000



Chapter 4

Electron-electron interaction in second
quantization

4.1. The Coulomb repulsion Hamiltonian

It was a great success that we solved the many-electron problem in the self-consistent field
approximation. The solutions exhibit important physical quantities, such as the electron density
distribution and the total energy of the system. If someone asks us to summarize the spirit of
the methods into one word, then this word must be “mean-field”. It was the mean-field potential
that simplified our problem dramatically. However, by introducing a mean-field, we sacrificed
detailed information how exactly individual electrons interact among themselves.

Consider a carbon atom with electronic configuration: 1s2 2s2 2p2. Both the 1s2 and 2s2 shells
are fully occupied, but the 2p2 shell is still open. According to the Pauli exclusion principle, one
p shell can contain at most 6 electrons with orbital angular projection momentum m = 1, 0,−1
and spin angular projection momentum σ =↑, ↓.1 Since the 2p2 shell is not fully occupied, these
two electrons can take different quantum numbers among those allowed m and σ. But how
exactly are these two electrons arranged, our mean-field potential does not tell a difference. In
this 2p2 shell, energies of different m and σ are all degenerate.

It is important to understand why the mean-field potential distinguishes “n and l” but not “m or
σ”: Because we calculated the mean-field potential according to electron radial wave functions
Rnl, which are distinguished by quantum numbers n and l. But for the angular part, we made
an approximation that the electrons are spherical symmetrically distributed, which implies all
Ylm are treated equally as Y00. Moreover, we didn’t make a distinction between spin up and spin
down. It doesn’t really matter which m or σ state the electron is. However, the real physics is,
due to the interaction among electrons, there will be an energy-splitting among different m and
σ quantum states. Since our mean-field potential cannot resolve this energy-splitting, this might
be a good time for us to revisit our “trouble maker”: the very complicated Coulomb repulsion

1A more general convention is to write the orbital and spin projection quantum numbers as ml and ms,
respectively. When a spin 1/2 particle (in our case electron) is considered, we can also write them as m and σ to
simplify our notations.
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potential

HU =

N∑
i<j

1

|ri − rj |
(4.1)

Previously we replaced this electron-electron repulsion by a mean-field potential. Now, we would
like to handle it directly, which is, of course, not easy. This Coulomb repulsion Hamiltonian
becomes more handleable if we reformulate it into second quantization (see Appendix B)

HU =
1

2

∑
α,β,γ,δ

Uαβγδc
†
αc
†
βcγcδ (4.2)

where,

α = {n1, l1, m1, σ1}
β = {n2, l2, m2, σ2}
γ = {n3, l3, m3, σ3}
δ = {n4, l4, m4, σ4}

These four indices (α, β, γ, δ) represent four sets of electron quantum numbers. Perhaps the
immediate question is, “Why four indices?” It seems like we need only two indices since each
electron-pair interaction in Eqn. (4.1) involves two electrons. In Eqn. (4.2), we have two electron
creators and two electron annihilators. If we understand the mechanism of those creation and
annihilation operators, this picture will become much clearer. Let’s say initially we have a two-
electron state |γ, δ〉. First, the operator cδ annihilates the electron with quantum number δ,
which produces |γ〉. Then, cγ annihilates the second electron and returns a vacuum state |0〉.
Next, the creation operator c†β creates an electron from the vacuum and we get |β〉. Finally, c†α
creates another electron and we obtain our final state |β, α〉.

|γ, δ〉 cδ−→ |γ〉 cγ−→ |0〉
c†β−→ |β〉 c†α−→ |β, α〉

This four-step process involves two electrons. One can think |γ, δ〉 as the initial state and |β, α〉
as the final state. That is why four indices are involved.

The next question is, “What’s the range of the indices?” The answer is that the indices enu-
merate all possible quantum states of electrons, that is, infinitely many. In fact, Eqn. (4.2) is
absolutely equivalent to Eqn. (4.1). They are just two different formulations on the same physics
problem. But later we need to restrict the range of the indices, say, into the same shell, making
an approximation. Otherwise the dimension of the problem will be too huge to be solvable. The
very important Uαβγδ is called the matrix element, from which we see the connection between
Eqns. (4.1) and (4.2).

Uαβγδ = δσ1σ4δσ2σ3

∫
d3r1

∫
d3r2 ϕn1l1m1(r1)ϕn2l2m2(r2)

1

|r1 − r2|
ϕn3l3m3(r2)ϕn4l4m4(r1) (4.3)

Uαβγδ is really just a “number”. But the multi-dimensional integration makes the computation
not trivial at all. In fact, this entire chapter is dedicated to discussing the computation of this
Coulomb repulsion matrix element, which plays a crucial role in our problem. The difficulty of
evaluating this integral comes from the fact that r1 and r2 are coupled together. I admit that the
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term 1
|r1−r2| looks lovely. But we cannot go further if this coupling term exists. Unfortunately,

we have to expand this lovely term into a monster. It is called the multipole expansion [17]

1

|r1 − r2|
=
∞∑
k=0

rk<

rk+1
>

4π

2k + 1

k∑
µ=−k

Ykµ(θ1, φ1)Ykµ(θ2, φ2) (4.4)

If r1 ≤ r2,

r< = r1, r> = r2 (4.5)

If r1 > r2,

r< = r2, r> = r1 (4.6)

The magic of Eqn. (4.4) is that it separates r1 and r2. In other words, (r1, θ1, φ1) and (r2, θ2, φ2)
can be integrated independently. Now, we want to substitute (4.4) into (4.3). Er... well, maybe
we could do some abbreviation first to reduce our headache. The multipole expansion consists
of two major parts:

The radial part,

R(k)(n1l1, n2l2, n3l3, n4l4) =

∫ ∞
0

dr1 r
2
1

∫ ∞
0

dr2 r
2
2 Rn1l1(r1)Rn2l2(r2)

rk<

rk+1
>

Rn3l3(r2)Rn4l4(r1)

=

∫ ∞
0

dr1

∫ ∞
0

dr2 un1l1(r1)un2l2(r2)
rk<

rk+1
>

un3l3(r2)un4l4(r1) (4.7)

The angular part,

A(k)(l1m1, l2m2, l3m3, l4m4) =
k∑

µ=−k

∫ 2π

0
dφ1

∫ π

0
dθ1 sin θ1 Yl1m1(θ1, φ1)Ykµ(θ1, φ1)Yl4m4(θ1, φ1)

∫ 2π

0
dφ2

∫ π

0
dθ2 sin θ2 Yl2m2(θ2, φ2)Ykµ(θ2, φ2)Yl3m3(θ2, φ2)

(4.8)

Consequently, Eqn. (4.3) can be written as

Uαβγδ = δσ1σ4δσ2σ3

∞∑
k=0

4π

2k + 1
R(k)(n1l1, n2l2, n3l3, n4l4)A(k)(l1m1, l2m2, l3m3, l4m4) (4.9)

Hum... Much clearer. But the difficulty remains: how to evaluate the radial partR(k)(n1l1, n2l2, n3l3, n4l4)
and the angular part A(k)(l1m1, l2m2, l3m3, l4m4), respectively?

4.2. Slater-Condon parameters

Our first task is to solve the radial part:

R(k)(n1l1, n2l2, n3l3, n4l4) =

∫ ∞
0

dr1

∫ ∞
0

dr2 un1l1(r1)un2l2(r2)
rk<

rk+1
>

un3l3(r2)un4l4(r1) (4.10)



32 Electron-electron interaction in second quantization

But how is it possible to evaluate such an integral with those mysterious r< and r>? Recall how
they are defined in Eqns. (4.5) and (4.6). We note down,

If r1 ≤ r2,
rk<

rk+1
>

=
rk1
rk+1

2

(4.11)

If r1 > r2,
rk<

rk+1
>

=
rk2
rk+1

1

(4.12)

Hum... it appears not that scary now. And the integration below can be evaluated casewise:∫ ∞
0

dr2 un1l1(r1)un2l2(r2)
rk<

rk+1
>

un3l3(r2)un4l4(r1)

=

∫ r1

0
dr2 un1l1(r1)un2l2(r2)

rk2
rk+1

1

un3l3(r2)un4l4(r1) +

∫ ∞
r1

dr2 un1l1(r1)un2l2(r2)
rk1
rk+1

2

un3l3(r2)un4l4(r1)

= un1l1(r1)un4l4(r1)

[
1

rk+1
1

∫ r1

0
dr2 r

k
2un2l2(r2)un3l3(r2) + rk1

∫ ∞
r1

dr2
1

rk+1
2

un2l2(r2)un3l3(r2)

]
(4.13)

Hence, Eqn. (4.10) reads

R(k)(n1l1, n2l2, n3l3, n4l4) =∫ ∞
0

dr1un1l1(r1)un4l4(r1)

[
1

rk+1
1

∫ r1

0
dr2 r

k
2un2l2(r2)un3l3(r2) + rk1

∫ ∞
r1

dr2
1

rk+1
2

un2l2(r2)un3l3(r2)

]
(4.14)

Absolutely under our control, not? We are glad to see that r1 and r2 are separated. This
is the Slater-Condon parameter that we are going to evaluate. One should be aware that for
a given index {n, l}, the radial wave function unl is not uniquely determined. It depends on
the choice of the system. For instance, one can use the hydrogen-like radial wave functions,
whose solutions are known analytically. But as a better estimation, we will use the radial wave
functions from our self-consistent calculations. In fact, this ab-initio Slater-Condon parameter
enters as a connection between our previous results and the multiplet calculations that we will
work on.

It is interesting to notice that all the integrations come with a factor rk (or r−k−1). It would
be ideal if we can develop a numerical integration method that takes into account those factors
implicitly, so that only the wave functions are required as input. Now, we would like to extend
our discussion to a general type of integration, namely, if the integral has the following form

I =

∫ ∞
0

dx rkf(x) (4.15)

where k is an arbitrary integer and f(x) is a smooth and slow varying function. One can think
this integral as an integration over f(x) with a weight rk (where r = ex/Z).

We would like to develop a numerical scheme which is exact for any f(x) = ax2 + bx + c. The
recipe for constructing this scheme works as the following: First, we make an ansatz: for a
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3-point stencil (uniform grid) on an interval [x0, x2] the following relation is exact∫ x2

x0

dx rkf(x) = αf(x0) + βf(x1) + γf(x2) (4.16)

Our task is to determine those magic coefficients α, β and γ. (let’s first assume k 6= 0)

In the first step, we assume the input is a constant function f(x) = 1:∫ x2

x0

dx rk = rk2

(
1

k

)
− rk0

(
1

k

)
= A (4.17)

Next, for the first order, we take f(x) = x:∫ x2

x0

dx rkx = rk2

(
x2

k
− 1

k2

)
− rk0

(
x0

k
− 1

k2

)
= B (4.18)

Then for the second order, we take f(x) = x2:∫ x2

x0

dx rkx2 = rk2

(
x2

2

k
− 2x2

k2
+

2

k3

)
− rk0

(
x2

0

k
− 2x0

k2
+

2

k3

)
= C (4.19)

Now, our coefficients α, β and γ should be chosen such that all the three conditions are fulfilled.
This is a system of equations with three unknowns. The linear system is given by 1 1 1

x0 x0 + ∆x x0 + 2∆x
x2

0 (x0 + ∆x)2 (x0 + 2∆x)2

αβ
γ

 =

AB
C

 (4.20)

Thanks to Mathematica, a very useful tool for symbolic calculations, we obtain our solutions:

α = −rk0
(

1

k3∆x2
+

3

2k2∆x
+

1

k

)
+ rk2

(
1

k3∆x2
− 1

2k2∆x

)
(4.21)

β = 2rk0

(
1

k3∆x2
+

1

k2∆x

)
+ 2rk2

(
− 1

k3∆x2
+

1

k2∆x

)
(4.22)

γ = −rk0
(

1

k3∆x2
+

1

2k2∆x

)
+ rk2

(
1

k3∆x2
− 3

2k2∆x
+

1

k

)
(4.23)

Those are the magic coefficients that satisfy our ansatz. In other words, the summation [αf(x0)+
βf(x1) + γf(x2)] will be exact for integrating any function with the form rk

[
ax2 + bx+ c

]
on

an interval [x0, x2]. In our calculations we assumed that k 6= 0. But if k = 0, those three
coefficients are much simpler, namely,

α =
1

3
∆x, β =

4

3
∆x, γ =

1

3
∆x (4.24)

They are simply the coefficients from the Simpson’s rule.

Now, our task is to integrate the entire domain [x0, xn−1]. This is simply done by summing up
each small domain. Our final expression becomes a weighted sum:

I ≈
n−1∑
i=0

wif(xi) (4.25)
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This is the beauty of the numerical integration method. Once the weights are determined
(although not trivial), we can very easily compute the integral by a weighted sum. The relation
between the weights and our coefficients can be easily seen from below: (requiring n odd)

α0 β0 γ0

α2 β2 γ2

. . .

+) αn−3 βn−3 γn−3

w0 w1 w2 w3 w4 · · · wn−3 wn−2 wn−1

In conclusion, the weights are summarized below:

wi =


αi if i = 0

βi−1 if i = 1, 3, . . . , n− 2

γi−2 + αi if i = 2, 4, . . . , n− 3

γi−2 if i = n− 1

(4.26)

We call this scheme a weighted Simpson’s rule. If we make a two-point stencil ansatz, we
could easily derive a weighted trapezoidal rule. Those weighted integration methods have the
advantage that the factor rk is taken care by the weights automatically, but the accuracy of the
methods is not guaranteed to be better than a traditional numerical integration method. Now,
we would like to compare the calculations of the Slater-Condon parameter (Eqn. (4.28)) with
k = 6 for a hydrogen wave function “4f” using trapezoidal, weighted-trapezoidal, Simpson and
weighted Simpson’s rules, on a few grids with different spacing:{

rmin = 0.1; rmax = 150.0; ∆x = 100, 10−1, . . . , 10−6;
}

(4.27)
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Figure 4.1.: Numerical integrations of Slater-Condon parameters with k = 6 for hydrogen
wave function “4f” using trapezoidal, weighted-trapezoidal, Simpson and weighted
Simpson’s rules. This figure plots the relative error against the grid size ∆x on a
log-log scale.

However, the weighted integration methods do not give a better accuracy. On the contrary, the
accuracy is worse than a traditional numerical integration scheme. The problem was caused
by the “division by a very small number” numerical error. In the coefficients α, β and γ, we
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had some terms like 1/(k3∆x2). If ∆x goes very small, say, 10−6, a large numerical error could
be introduced due to machine accuracy. Although we have spent so much effort deriving the
weighted integration method, we would still stick with the traditional Simpson’s rule as our
integration method. On the other hand, this is also a “good news” as the Simpson’s rule is
much easier to implement.

If we are only interested in the electron interactions in the same shell, i.e. n1l1 = n2l2 = n3l3 =
n4l4 = nl, Eqn. (4.14) simplifies to

F (k)(nl) =

∫ ∞
0

dr1|unl(r1)|2
[

1

rk+1
1

∫ r1

0
dr2 r

k
2 |unl(r2)|2 + rk1

∫ ∞
r1

dr2
1

rk+1
2

|unl(r2)|2
]

(4.28)

To verify the accuracy of Simpson’s integration on the Slater-Condon parameters, we take the
first few hydrogen wave functions as inputs, which are known exactly. We compute the on-
shell interaction parameters according to Eqn. (4.28). We used a grid {rmin = 0.0001; rmax =
150.0; ∆x = 0.002; }.2 The results are listed in Table 4.1. Notice that exact wave functions are
used as input. In practical calculations, when a numerical wave function is provided, the results
will be subject to the accuracy of the given numerical wave function.

Table 4.1.: Numerical (Simpson’s rule) and exact Slater-Condon parameters for the first few
exact hydrogen wave functions. Energies are given in units of Hartree (a.u.).

Orbital k Numerical Exact Abs Error Rel Error

1s 0 0.625000 5/8 2.7842× 10−12 4.4547× 10−12

2s 0 0.150391 77/512 2.1716× 10−13 1.4440× 10−12

2p 0 0.181641 93/512 7.8798× 10−14 4.3381× 10−13

2 0.087891 45/512 3.0531× 10−14 3.4738× 10−13

3s 0 0.066406 17/256 1.4978× 10−13 2.2556× 10−12

3p 0 0.071868 1987/27648 1.1495× 10−13 1.5995× 10−12

2 0.035988 995/27648 3.9472× 10−13 1.0968× 10−11

3d 0 0.086046 793/9216 6.3449× 10−14 7.3739× 10−13

2 0.045421 2093/46080 1.1700× 10−13 2.5760× 10−12

4 0.029622 91/3072 6.3165× 10−13 2.1323× 10−11

4s 0 0.037271 19541/524288 1.4345× 10−13 3.8489× 10−12

4p 0 0.038935 20413/524288 1.2726× 10−13 3.2685× 10−12

2 0.019922 10445/524288 5.2667× 10−13 2.6436× 10−11

4d 0 0.042673 22373/524288 9.9913× 10−14 2.3414× 10−12

2 0.021573 56553/2621440 3.8654× 10−13 1.7917× 10−11

4 0.014780 7749/524288 2.2203× 10−13 1.5022× 10−11

4f 0 0.050226 26333/524288 5.4602× 10−14 1.0871× 10−12

2 0.028140 103275/3670016 1.4186× 10−13 5.0413× 10−12

4 0.018802 69003/3670016 2.9456× 10−13 1.5667× 10−11

6 0.013910 7293/524288 1.6736× 10−12 1.2031× 10−10

2We used a grid wider than (2.15) to be able to represent hydrogen wave functions with large principle quantum
numbers, which spread out to the further region from the nucleus.
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4.3. Gaunt coefficients

Our next task is to solve the angular part:

A(k)(l1m1, l2m2, l3m3, l4m4) =
k∑

µ=−k

∫ 2π

0
dφ1

∫ π

0
dθ1 sin θ1 Yl1m1(θ1, φ1)Ykµ(θ1, φ1)Yl4m4(θ1, φ1)

∫ 2π

0
dφ2

∫ π

0
dθ2 sin θ2 Yl2m2(θ2, φ2)Ykµ(θ2, φ2)Yl3m3(θ2, φ2)

(4.29)

Our life simplifies in Bra-Ket notation:

A(k)(l1m1, l2m2, l3m3, l4m4) =
k∑

µ=−k
〈l1m1| kµ |l4m4〉 〈l2m2| kµ |l3m3〉 (4.30)

We can get rid of the complex conjugate in the middle by using an important relation of spherical
harmonics:3

Ykµ(θ, φ) = (−1)µYk,−µ(θ, φ) (4.31)

Now Eqn. (4.30) becomes,

A(k)(l1m1, l2m2, l3m3, l4m4) =
k∑

µ=−k
(−1)µ 〈l1m1| k,−µ |l4m4〉 〈l2m2| kµ |l3m3〉 (4.32)

A term like 〈l1m1| kµ |l2m2〉 is called a Gaunt coefficient. It is purely integrals of three spherical
harmonics. An important property of this integral is that the integration vanishes under certain
combinations of indices. Non-trivial Gaunt coefficients must satisfy the sum rules:

µ = m1 −m2 (4.33)

|l1 − l2| ≤ k ≤ l1 + l2 and l1 + l2 + k is even (4.34)

While the relation in Eqn. (4.34) is difficult to derive, it is rather straightforward to show the
sum rule in Eqn. (4.33). One can express the spherical harmonics in terms of the associated
Legendre polynomials,4

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPml (cos θ) (4.35)

Therefore, a Gaunt coefficient reads,

〈l1m1| kµ |l2m2〉 =

√
(2l1 + 1)(2k + 1)(2l2 + 1)

(4π)3

(l1 −m1)!(k − µ)!(l2 −m2)!

(l1 +m1)!(k + µ)!(l2 +m2)!∫ 2π

0
dφ eiφ(−m1+µ+m2)

∫ π

0
dθ sin θ Pm1

l1
(cos θ)Pµk (cos θ)Pm2

l2
(cos θ) (4.36)

3You see, we put a comma to separate indices when there is an ambiguity. While kµ appears as two indices,
the notation k−µ looks like “k minus µ”. For the later case, we prefer k,−µ to make it clear.

4The associated Legendre polynomials are defined as Pml (x) = (−1)m(1− x2)m/2 dm

dxm
(Pl(x)).
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It can be seen that if −m1 +µ+m2 6= 0, the φ integral from 0 to 2π over a complex exponential
function gives 0. Hence we had Eqn. (4.33). It is also important to notice that the Gaunt
coefficients are real numbers. Now we use a notation for Gaunt coefficients

g(k)
m1m2

= 〈l1m1| kµ |l2m2〉 (4.37)

We dropped indices l1 and l2 in the notation g
(k)
m1m2 because they are usually predefined. We

also dropped the index µ since it is determined by m1 and m2 automatically. Because of this
uniqueness of µ, only one term survives in the summations in Eqn. (4.32).

A(k)(l1m1, l2m2, l3m3, l4m4) = (−1)µg(k)
m1m4

g(k)
m2m3

(4.38)

It is now a matter of evaluating the Gaunt coefficients. The integration of three spherical
harmonics can be obtained from a recursion relation.

〈l1m1| kµ |l2m2〉 = a 〈l1 + 1,m1| k−1, µ |l2m2〉+b 〈l1 − 1,m1| k−1, µ |l2m2〉+c 〈l1m1| k−2, µ |l2m2〉
(4.39)

where,

a =

√
(2k + 1)(2k − 1)(l1 +m1 + 1)(l1 −m1 + 1)

(k + µ)(k − µ)(2l1 + 3)(2l1 + 1)
(4.40)

b =

√
(2k + 1)(2k − 1)(l1 +m1)(l1 −m1)

(k + µ)(k − µ)(2l1 + 1)(2l1 − 1)
(4.41)

c = −

√
(2k + 1)(k + µ− 1)(k − µ− 1)

(k + µ)(k − µ)(2k − 3)
(4.42)

with base case,

〈l1m1| 00 |l2m2〉 =
1√
4π
δl1l2δm1m2 (4.43)

Derivation: Warning: A bit long.

Given the relation between Ylm and Pml and the recursion relation of the associated Legendre
polynomials,

Ylm =

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPml (4.44)

(l −m+ 1)Pml+1 = (2l + 1)xPml − (l +m)Pml−1 (4.45)

We get,

(l−m+ 1)

√
(2l + 1)(l +m+ 1)

(2l + 3)(l −m+ 1)
Yl+1,m = (2l+ 1)xYlm− (l+m)

√
(2l + 1)(l −m)

(2l − 1)(l +m)
Yl−1,m (4.46)
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Now, substitutions,5

〈Yl1m1 | Ykµ |Yl2m2〉

= 〈Yl1m1 |
1

k − µ

√
(2k + 1)(k − µ)

(2k − 1)(k + µ)

[
(2k − 1)xYk−1,µ − (k + µ− 1)

√
(2k − 1)(k − µ− 1)

(2k − 3)(k + µ− 1)
Yk−2,µ

]
|Yl2m2〉

=

√
(2k + 1)(2k − 1)

(k + µ)(k − µ)
〈xYl1m1 | Yk−1,µ |Yl2m2〉 −

√
(2k + 1)(k + µ− 1)(k − µ− 1)

(k + µ)(k − µ)(2k − 3)
〈Yl1m1 |Yk−2,µ |Yl2m2〉

=

√
(2k + 1)(2k − 1)

(k + µ)(k − µ)

[
l1 −m1 + 1

2l1 + 1

√
(2l1 + 1)(l1 +m1 + 1)

(2l1 + 3)(l1 −m1 + 1)
〈Yl1+1,m1 |Yk−1,µ |Yl2m2〉

+
l1 +m1

2l1 + 1

√
(2l1 + 1)(l1 −m1)

(2l1 − 1)(l1 +m1)
〈Yl1−1,m1 |Yk−1,µ |Yl2m2〉

]

−

√
(2k + 1)(k + µ− 1)(k − µ− 1)

(k + µ)(k − µ)(2k − 3)
〈Yl1m1 |Yk−2,µ |Yl2m2〉

=

√
(2k + 1)(2k − 1)(l1 +m1 + 1)(l1 −m1 + 1)

(k + µ)(k − µ)(2l1 + 3)(2l1 + 1)
〈Yl1+1,m1 |Yk−1,µ |Yl2m2〉

+

√
(2k + 1)(2k − 1)(l1 +m1)(l1 −m1)

(k + µ)(k − µ)(2l1 + 1)(2l1 − 1)
〈Yl1−1,m1 |Yk−1,µ |Yl2m2〉

−

√
(2k + 1)(k + µ− 1)(k − µ− 1)

(k + µ)(k − µ)(2k − 3)
〈Yl1m1 |Yk−2,µ |Yl2m2〉 Q.E.D. (4.47)

To get a flavor of how this recursion works, we consider an element

〈1,−1| 2, 0 |1,−1〉

Apply Eqn. (4.39), we find

〈1,−1| 2, 0 |1,−1〉

=

√
3

2
〈2,−1| 1, 0 |1,−1〉+ 0 〈0,−1|︸ ︷︷ ︸

undefined

1, 0 |1,−1〉 −
√

5

2
〈1,−1| 0, 0 |1,−1〉︸ ︷︷ ︸

1/
√

4π

=

√
3

2

√24

35
〈3,−1| 0, 0 |1,−1〉︸ ︷︷ ︸

0

+

√
3

5
〈1,−1| 0, 0 |1,−1〉︸ ︷︷ ︸

1/
√

4π

+0 〈2,−1| −1, 0︸ ︷︷ ︸
undefined

|1,−1〉

− √
5

2
√

4π

=− 1√
20π

(4.48)

Yeah, we found it!

Recursion (4.39) is universal for all Gaunt coefficients. So one would expect that we could
implement a recursive function Gaunt(l1, l2, k, m1, m2) and apply to every Gaunt to obtain

5Notice that the following notations are equivalent: 〈Yl1m1 |Ykµ |Yl2m2〉 = 〈l1m1| kµ |l2m2〉. Here we prefer the
former one, since a term like “xYlm” is less confusing than “xlm”
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their values. That would be too good to be true. Unfortunately, our recursive function can only
be used for the diagonal elements (strictly speaking, for m1 = m2). Now consider,

〈1,−1| 2,−2 |1, 1〉

Apply Eqn. (4.39),

〈1,−1| 2,−2 |1, 1〉

=

√
30

0
〈2,−1| 1,−2︸ ︷︷ ︸

undefined

|1, 1〉+

√
0

0
〈0,−1| 1,−2︸ ︷︷ ︸

undefined

|1, 1〉 −
√
−15

0
〈1,−1| 0,−2︸ ︷︷ ︸

undefined

|1, 1〉

=NaN (4.49)

Not-a-Number.

This doesn’t mean that 〈1,−1| 2,−2 |1, 1〉 is equal to infinity or zero or what. A ratio 0/0 can
give us anything, but the information is destroyed. We cannot extract this value from recursion
(4.39). This “division by zeros” problem is caused by a non-zero µ, namely, m1 6= m2. The term
(k+ µ)(k− µ) in the denominator becomes zero if |µ| = k. To get the off-diagonal elements, we
have to ask help from the ladder operators L+ and L−. Recall,

L± |lm〉 = α±lm |l,m± 1〉 (4.50)

where,

α+
lm =

√
(l +m+ 1)(l −m) (4.51)

α−lm =
√

(l +m)(l −m+ 1) (4.52)

Now consider two nonzero elements(
〈l1m1|L+

)
k, µ− 1 |l2m2〉 and

(
〈l1m1|L−

)
k, µ+ 1 |l2m2〉

(
〈l1m1|L+

)
k, µ− 1 |l2m2〉 = α−l1m1

〈l1,m1 − 1| k, µ− 1 |l2m2〉

〈l1m1|
(
L+ k, µ− 1 |l2m2〉

)
= α+

k,µ−1 〈l1m1| kµ |l2m2〉+ α+
l2m2
〈l1m1| k, µ− 1 |l2,m2 + 1〉

(4.53)
(
〈l1m1|L−

)
k, µ+ 1 |l2m2〉 = α+

l1m1
〈l1,m1 + 1| k, µ+ 1 |l2m2〉

〈l1m1|
(
L− k, µ+ 1 |l2m2〉

)
= α−k,µ+1 〈l1m1| kµ |l2m2〉+ α−l2m2

〈l1m1| k, µ+ 1 |l2,m2 − 1〉
(4.54)

From Eqn. (4.53), we get the relation

α−l1m1
〈l1,m1 − 1| k, µ− 1 |l2m2〉 = α+

k,µ−1 〈l1m1| kµ |l2m2〉+ α+
l2m2
〈l1m1| k, µ− 1 |l2,m2 + 1〉

(4.55)
which binds three Gaunt coefficients as

· · · · · · · · · · · ·
· · · gm1−1,m2 gm1−1,m2+1 · · ·
· · · gm1, m2 gm1, m2+1 · · ·
· · · · · · · · · · · ·


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From Eqn. (4.54), we get the relation

α+
l1m1
〈l1,m1 + 1| k, µ+ 1 |l2m2〉 = α−k,µ+1 〈l1m1| kµ |l2m2〉+ α−l2m2

〈l1m1| k, µ+ 1 |l2,m2 − 1〉
(4.56)

which binds three Gaunt coefficients as
· · · · · · · · · · · ·
· · · gm1, m2−1 gm1, m2 · · ·
· · · gm1+1,m2−1 gm1+1,m2 · · ·
· · · · · · · · · · · ·


As an illustration, we consider the Gaunt coefficient matrix for l1 = 1 and l2 = 2. This matrix
has the following rectangular shape:

−2 −1 0 1 2[ ]−1
0
1

where the m1 index traverses vertically (row number) and the m2 index traverses horizontally
(column number). A simple strategy for calculating the matrix elements is shown in the diagram
below

−2 −1 0 1 2[ ]−1 ← ⊗ → → →
0 ← ← ⊗ → →
1 ← ← ← ⊗ →

The elements “⊗” are the diagonal elements with m1 = m2, which can be calculated directly
from the recursion relation. The arrows indicate the direction of applying the ladder operator
relations. Notice that any element outside the matrix is zero, because the coefficients α±lm in
(4.51) and (4.52) vanish for m = l and −l, respectively. A detailed pictorial illustration is shown
below: (play it as an animation, once an elements is calculated, we stamp an ⊗)

0 ? ⊗
⊗
⊗

0 ⊗ ⊗ ?

⊗
⊗

0 ⊗ ⊗ ⊗ ?

⊗
⊗

0 ⊗ ⊗ ⊗ ⊗ ?

⊗
⊗

 ⊗ ⊗ ⊗ ⊗ ⊗
? ⊗

⊗

 ⊗ ⊗ ⊗ ⊗ ⊗
? ⊗ ⊗

⊗

 ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ?

⊗

 ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ?

⊗

 ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗

? ⊗

 ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗

? ⊗ ⊗

 ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗
? ⊗ ⊗ ⊗

 ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ?



Gaunt coefficients 41

Complete! The speed of the algorithm can be doubled if we consider the symmetry of the matrix.
(remember that Gaunt coefficients are real)

〈l1m1| kµ |l2m2〉 = (−1)m1+m2+µ
〈
l1,−m1

∣∣ k,−µ ∣∣l2,−m2

〉
= (−1)2m1

〈
l1,−m1

∣∣ k,−µ ∣∣l2,−m2

〉
= 〈l1,−m1| k,−µ |l2,−m2〉 (4.57)

Eqn. (4.57) says, the Gaunt matrix has the following symmetry: (inverse symmetry)

−2 −1 0 1 2[ ]−1 	 × ♥ + ♦
0 ÷ 4 � 4 ÷
1 ♦ + ♥ × 	

Hence, our algorithm simplifies to:

0 ⊗ ?

⊗
? ⊗

0 ⊗ ⊗ ?

⊗
? ⊗ ⊗

0 ⊗ ⊗ ⊗ ?

⊗
? ⊗ ⊗ ⊗

 ⊗ ⊗ ⊗ ⊗
? ⊗ ?

⊗ ⊗ ⊗ ⊗

 ⊗ ⊗ ⊗ ⊗
? ⊗ ⊗ ⊗ ?

⊗ ⊗ ⊗ ⊗

 ? ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ?

Done! Symmetry in Eqn. (4.57) allows us to compute just half of the elements thus obtaining
a speed up. Yet, there is another symmetry property of Gaunt coefficients which relates two
adjoint matrices. (Gaunt coefficients are real)

〈l1m1| kµ |l2m2〉 = 〈l1m1| kµ |l2m2〉
= 〈l2m2| kµ |l1m1〉
= (−1)µ 〈l2m2| k,−µ |l1m1〉 (4.58)

Eqn. (4.58) says,

⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗

←→

⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕

 where, ⊕ = (−1)µ ⊗

Once the Gaunt matrix with l1 = 1 and l2 = 2 is determined, the Gaunt matrix with l1 = 2 and
l2 = 1 can be read off directly without doing another calculation.

Previously, we calculated all diagonal elements from the recursion relation. That was absolutely
valid, but recursive calls may cost considerable computational time especially when the matrix
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gets huge. In fact, we need to calculate only one diagonal element from the recursion relation.
The others can be obtained from ladder operators. For example (a 5-by-7 matrix):

⊗

⊗




⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗




⊗ ⊗ ⊗ ⊗ ⊗ ⊗
?

?
⊗ ⊗ ⊗ ⊗ ⊗ ⊗




⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗

⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗




⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗




⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗

?
⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗




⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗
⊗

⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗




⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗



⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗


This is how we implement our program to evaluate the Gaunt coefficients. It might be useful if we
summarize a few Gaunt matrices with l1 = l2 for s, p, d and f shells (the on-shell interactions).
The results are listed in the next pages.
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s shell (l1 = l2 = 0):

k = 0
1√
4π

[
1
]

(4.59)

p shell (l1 = l2 = 1):

k = 0

1√
4π

 1 0 0
0 1 0
0 0 1

 (4.60)

k = 2

1√
4π

1√
5

 −1
√

3 −
√

6

−
√

3 2 −
√

3

−
√

6
√

3 −1

 (4.61)

d shell (l1 = l2 = 2):

k = 0

1√
4π


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (4.62)

k = 2

1√
4π

1

7


−
√

20
√

30 −
√

20 0 0

−
√

30
√

5
√

5 −
√

30 0

−
√

20 −
√

5
√

20 −
√

5 −
√

20

0 −
√

30
√

5
√

5 −
√

30

0 0 −
√

20
√

30 −
√

20

 (4.63)

k = 4

1√
4π

1

7


1 −

√
5

√
15 −

√
35

√
70√

5 −4
√

30 −
√

40
√

35√
15 −

√
30 6 −

√
30

√
15√

35 −
√

40
√

30 −4
√

5√
70 −

√
35

√
15 −

√
5 1

 (4.64)
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f shell (l1 = l2 = 3):

k = 0

1√
4π



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(4.65)

k = 2

1√
4π

1

3
√

5



−5 5 −
√

10 0 0 0 0

−5 0
√

15 −
√

20 0 0 0

−
√

10 −
√

15 3
√

2 −
√

24 0 0

0 −
√

20 −
√

2 4 −
√

2 −
√

20 0

0 0 −
√

24
√

2 3 −
√

15 −
√

10

0 0 0 −
√

20
√

15 0 −5

0 0 0 0 −
√

10 5 −5


(4.66)

k = 4

1√
4π

1

11



3 −
√

30
√

54 −
√

63
√

42 0 0√
30 −7

√
32 −

√
3 −

√
14

√
70 0√

54 −
√

32 1
√

15 −
√

40
√

14
√

42√
63 −

√
3 −

√
15 6 −

√
15 −

√
3

√
63√

42
√

14 −
√

40
√

15 1 −
√

32
√

54

0
√

70 −
√

14 −
√

3
√

32 −7
√

30

0 0
√

42 −
√

63
√

54 −
√

30 3


(4.67)

k = 6

1√
4π

5

33
√

13



−1
√

7 −
√

28
√

84 −
√

210
√

462 −
√

924

−
√

7 6 −
√

105
√

224 −
√

378
√

504 −
√

462

−
√

28
√

105 −15
√

350 −
√

420
√

378 −
√

210

−
√

84
√

224 −
√

350 20 −
√

350
√

224 −
√

84

−
√

210
√

378 −
√

420
√

350 −15
√

105 −
√

28

−
√

462
√

504 −
√

378
√

224 −
√

105 6 −
√

7

−
√

924
√

462 −
√

210
√

84 −
√

28
√

7 −1


(4.68)



Chapter 5

Construction of multiplet states

5.1. Setting up the basis and Hamiltonian

Oh, this is probably the most crucial step. All of our efforts spent so far on the Slater-Condon
parameters and the Gaunt coefficients are aimed at calculating the matrix elements

Uαβγδ = δσ1σ4δσ2σ3

∑
k(sum rule)

4π

2k + 1
R(k)(n1l1, n2l2, n3l3, n4l4)A(k)(l1m1, l2m2, l3m3, l4m4)

(5.1)
so that we can build up the Coulomb repulsion Hamiltonian.

We called Uαβγδ the matrix element. But as you might have noticed already, it has four indices
α, β, γ and δ. It is not really a “matrix” in our common sense. Indeed, Uαβγδ is not the matrix
that we will directly work with. The actual matrix we will be using is the matrix representation
of the Hamiltonian HU . Now, to obtain the matrix representation, we must ask ourselves what
basis do we work with.

Our first step is to set up a basis in the electron configuration space. As a demonstration, we
will do a case study for a p2 orbital. According to Pauli exclusion principle, one p shell can at
most contain 6 electrons with orbital and spin angular projection momenta m = 1, 0,−1 and
σ =↑, ↓, respectively. One can think the problem as 6 boxes where we can put (up to) 6 electrons
(see the diagram below).

1 0 −1
↑
↓

In our problem we have 2 electrons. How many possible ways are there to put them into our
boxes? This is simply a combinatorics problem.

• • • • •
•

•
•

•
•

• • •
•

•
•

•
•

•
•

•
•

•
• • • • • • •
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6 boxes put 2 electrons, that is “6 choose 2”(
6

2

)
=

6× 5

2!
= 15

possible ways. They are our 15 basis states (or basis vectors1) of electrons in the configuration
space. Everyone says that, but what does it mean? Imagine you put two electrons into the
shell: Of course we can arrange them in the ways as in the diagram, but electrons can do things
peculiar, they can form linear combinations of those basis states.2 Those 15 basis states (15
vectors) span a space that the electrons can live in. Recall our Cartesian coordinate, we had 3
basis vectors called x̂, ŷ and ẑ. Similarly, we can also assign names to those 15 basis vectors, for
example, from â to ô (if I counted correctly). But a more convenient and sophisticated naming
method is the bit representation.

|− − −−−−〉

Here we have 6 sites, if a site is occupied by an electron, we put a “1”, otherwise, we put a “0”
(they are called occupation numbers). For example,

•
• ≡ |100010〉 (5.2)

Therefore, our 15 basis states are:

|110000〉 |101000〉 |100100〉 |100010〉 |100001〉
|011000〉 |010100〉 |010010〉 |010001〉 |001100〉
|001010〉 |001001〉 |000110〉 |000101〉 |000011〉

The bit representation is convenient in the sense that they can be easily stored in the computer.
For instance, a binary number 100010 is nothing but a 34 in decimal. To store |100010〉 we
simply store an integer 34 in the computer. Yet, the pictorial meaning can be easily seen from
its binary format.

A simple algorithm of the basis setup for a given shell l and a given number of electrons Ne is
shown Algorithm 5.1. Notice that the function countBit() counts for the number of 1’s in a
given binary number.

After setting up the basis, we are now able to build the matrix representation of the Hamiltonian.
To obtain one entry at row i and column j, it means to evaluate the matrix element between
two basis state |i〉 and |j〉.

〈i|HU |j〉 = 〈i| 1
2

∑
α,β,γ,δ

Uαβγδc
†
αc
†
βcγcδ |j〉 (5.3)

It is not trivial at all to evaluate Eqn. (5.3). One needs to implement a program that loops over
all six indices (i, j, α, β, γ, δ). For each pair of (i, j), we sum up all the corresponding Uαβγδ to
obtain the entry 〈i|HU |j〉. Notice that the factor 1/2 in front is used to compensate the double
counting over electron pairs. A simplified algorithm is shown in Algorithm 5.2.

1By calling “states” or “vectors”, we really mean the same. When we say a “state”, it is more from a quantum
mechanics perspective that “a state of electrons”. When we use “vector”, we more emphasize from the linear
algebra point of view.

2Linear combinations of states are also valid solutions of the Schrödinger equation.
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Algorithm 5.1 Set up basis

1: function Basis(l, Ne)
2: Nsite ← 4 ∗ l + 2
3: dim← Binomial(Nsite, Ne)
4: indexi ← 0
5: for confi ← 0 to 2Nsite do
6: if countBit(confi) = Ne then
7: index[confi]← indexi
8: conf [indexi]← confi
9: indexi ← indexi + 1

10: basis.dim← dim
11: basis.index← index
12: basis.conf ← conf
13: return basis

Algorithm 5.2 Set up Hamiltonian

1: function Hamiltonian(basis)
2: dim← basis.dim
3: for i← 0 to dim do
4: confi ← basis.conf [i]
5: for all α do
6: if isBit(α, confi) then
7: confα ← clearBit(α, confi)
8: for all β do
9: if isBit(β, confα) then

10: confβ ← clearBit(β, confα)
11: for all γ do
12: if !isBit(γ, confβ) then
13: confγ ← setBit(γ, confβ)
14: for all δ do
15: if !isBit(δ, confγ) then
16: confδ ← setBit(δ, confγ)
17: confj ← confδ
18: j ← basis.index[confj ]
19: HU [i, j]← HU [i, j] + fsign ∗ 0.5 ∗ Uαβγδ
20: return HU

The function clearBit() clears a bit in a given configuration. For example, clearBit(2,111111)
returns 110111 (in binary). Similarly, setBit() sets a bit in a given configuration. The function
isBit() tests whether a specific site is occupied by an electron or not, from which we know if
we can clear or set a bit on that site. It is (always) tricky that we have to pay extra attention
to the fermi-sign fsign. Every time we call a function clearBit() or setBit(), it means that
we applied an electron annihilation or creation operator. But when we apply an annihilation or
creation operator, a fermi-sign (±1) is involved [16].
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5.2. Construction of eigen-states

Our problem is almost solved. What we want to know ultimately are the eigen-vectors and
eigen-energies of the Hamiltonian. But how big is this business? Since we have the matrix, to
get the eigen-vectors and eigen-energies, we can simply throw it into a matrix diagonalization
solver (e.g. Lapack), then we are done. But, is this the end of our story?

We continue our case study for the p2 orbital. In our previous section, we set the basis up by 15
basis vectors (let’s first sort the basis vectors in an ascending order of binary numbers). Under
this basis, we built up a 15-by-15 Hamiltonian. It has the following pattern:

HU =





⊗ |000011〉
⊗ |000101〉
⊗ |000110〉
⊗ |001001〉
⊗ ⊗ |001010〉
⊗ ⊗ ⊗ |001100〉

⊗ ⊗ |010001〉
⊗ ⊗ ⊗ |010010〉

⊗ ⊗ |010100〉
⊗ |011000〉

⊗ ⊗ ⊗ |100001〉
⊗ ⊗ |100010〉

⊗ |100100〉
⊗ |101000〉
⊗ |110000〉

The empty elements are killed by the δσ1σ4δσ2σ3 in Eqn. (5.1) (conservation of spin angular
momentum) and the vanishing Gaunt coefficients. Recall Eqn. (4.38), the sum rule requires
m1 + m2 = m3 + m4 (conservation of orbital angular momentum). At this stage, we can
throw HU into a matrix diagonalization solver, then we will obtain 15 eigen-energies plus 15
corresponding eigen-vectors. For people who are only interested in the eigen-energies (spectral
lines) of the system, calling a matrix diagonalization solver will be enough to solve the problem.
But if one wants to understand more physics about the system, asking, “What exactly are the
quantum numbers of those eigen-states?”, our solutions from the “brute-force” diagonalization
cannot explain. As we shall find out later, it turns out that those 15 eigen-energies are highly
degenerate. Among those 15 energies, we will obtain something like: 9 × E1, 5 × E2, 1 × E3.
Now the problem is, if the eigen-energies are degenerate, the corresponding eigen-vectors are
not uniquely defined. They live in a space where any linear combinations can be eigen-vectors.
Thus it is difficult to address each eigen-vector by a specific set of quantum numbers. This
high degeneracy that we claimed seems to be a mystery. In fact, the reason behind is that
there is a special symmetry in the Hamiltonian HU . Based on this symmetry, we can use a
special technique to diagonalize this matrix without calling a matrix diagonalization routine like
Lapack. More importantly, with this technique, eigen-vectors can be identified uniquely with
beautiful quantum numbers. The idea is to use the angular momentum ladder operators. First,
we need to prove that the Hamiltonian HU commutes with the total angular momenta L and S.
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Proof: By definition, the total angular momenta are L =
∑N

i=1 `i and S =
∑N

i=1 si.

[HU , S] = 0 is trivial, since

HU =
N∑
i<j

1

|ri − rj |
(5.4)

has no dependence on spin.

[HU , L] = 0 is a bit more difficult. We need

`i = −iri ×∇i (5.5)

Now, [
1

|ri − rj |
, `i

]
=

1

|ri − rj |
(−iri ×∇i)− (−iri ×∇i)

1

|ri − rj |

= iri ×
(
∇i

1

|ri − rj |

)
= iri ×

(
− ri − rj
|ri − rj |3

)
= i

ri × rj
|ri − rj |3

= irj ×
rj − ri
|rj − ri|3

= −irj ×
(
∇j

1

|rj − ri|

)
= −

[
1

|ri − rj |
, `j

]
(5.6)

Therefore, [
1

|ri − rj |
, `i + `j

]
= 0 (5.7) N∑

i<j

1

|ri − rj |
,

N∑
i=0

`i

 = 0 Q.E.D. (5.8)

Given that [HU , L] = 0 and [HU , S] = 0, we have the following relations:

[HU , L
2] = 0 [HU , Lz] = 0 [HU , S

2] = 0 [HU , Sz] = 0

As a result, an eigen-vector of HU is simultaneously eigen-vectors of L2, Lz, S
2, Sz. Thus, we can

denote an eigen-vector as |L,ML, S,MS〉.3 The commutation relations also lead to [HU , L±] = 0
and [HU , S±] = 0. Therefore, for a given eigen-vector |L,ML, S,MS〉 of HU , we can find new
eigen-vectors using the ladder operators, for example,

L−HU |L,ML, S,MS〉 = L−E |L,ML, S,MS〉
HUL− |L,ML, S,MS〉 = EL− |L,ML, S,MS〉
HU |L,ML − 1, S,MS〉 = E |L,ML − 1, S,MS〉

(5.9)

3At this stage, we denote an eigen-vector with the four quantum numbers |L,ML, S,MS〉, which is normally
sufficient. However, in the next section, we will find the situation in which |L,ML, S,MS〉 is not able to address
an eigen-vector uniquely. Then we would require an additional quantum number (called seniority number) to
address the eigen-vector.
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Similarly,

S−HU |L,ML, S,MS〉 = S−E |L,ML, S,MS〉
HUS− |L,ML, S,MS〉 = ES− |L,ML, S,MS〉
HU |L,ML, S,MS − 1〉 = E |L,ML, S,MS − 1〉

(5.10)

The idea is,

Starting from a leading vector, we can construct subsequent

vectors by applying ladder operators.
(5.11)

This is the technique we will use to diagonalize our Hamiltonian.

In Cartesian coordinates, we are used to arrange the basis vectors as [x̂, ŷ, ẑ]. But it really
doesn’t hurt if we do [ŷ, x̂, ẑ]. Previously we arranged the basis vectors in an ascending order
of binary numbers. But we can also arrange the order such that we see clearly the pattern of
the Hamiltonian.

HU =

|MLMS〉



⊗ |100100〉 | 2 0〉
⊗ |110000〉 | 1 1〉
⊗ ⊗ |010100〉 | 1 0〉
⊗ ⊗ |100010〉 | 1 0〉

⊗ |000110〉 | 1 −1〉
⊗ |101000〉 | 0 1〉
⊗ ⊗ ⊗ |001100〉 | 0 0〉
⊗ ⊗ ⊗ |010010〉 | 0 0〉
⊗ ⊗ ⊗ |100001〉 | 0 0〉

⊗ |000101〉 | 0 −1〉
⊗ |011000〉 |−1 1〉
⊗ ⊗ |001010〉 |−1 0〉
⊗ ⊗ |010001〉 |−1 0〉

⊗ |000011〉 |−1 −1〉
⊗ |001001〉 |−2 0〉

Why this pattern? Consider the configurations |001100〉, |010010〉 and |100001〉:

•
•

•
•

•
•

Those configurations have the same total ML = 0 and total MS = 0. Because of conservation of
angular momentum, the electrons can move freely among those three configurations. This gives
us the 3-by-3 block in the middle of the Hamiltonian. But a configuration like |100100〉

•
•

has no where to go. It has the maximum ML = 1 + 1 = 2. Any other configuration will give a
lower ML. Consequently, there is only one element in the corresponding row and column in the
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matrix. Hence, the state |100100〉 is an eigen-state of the Hamiltonian. But, as you might have
noticed already, |100100〉 is not the only basis state with the unique |MLMS〉. It is extremely
useful to make a table to count how many basis states are there for a given |MLMS〉.

MS

−1 0 1

2 0 1 0
1 1 2 1

ML 0 1 3 1
−1 1 2 1
−2 0 1 0

We labeled our basis states using two quantum numbers ML and MS and we found out that
there could be more than one basis state sharing the same ML and MS . An eigen-vector of the
Hamiltonian is, in general, a linear combination of the basis states with the same ML and MS .
If we are lucky, we find some basis states with unique quantum numbers. Then those states are
eigen-vectors by themselves.

Here comes the technique for constructing the eigen-vectors. We start from the basis state with
the largest MS and the corresponding largest ML (which is unique):

MS

−1 0 1

2 0 1 0

1 1 2 1
ML 0 1 3 1

−1 1 2 1
−2 0 1 0

This gives us an eigen-vector |1, 1, 1, 1〉. By applying L− and S− operators, we obtain

MS

−1 0 1
2 0 1 0

1 1 2 1 |1, 1, 1,−1〉 |1, 1, 1, 0〉 |1, 1, 1, 1〉
ML 0 1 3 1 |1, 0, 1,−1〉 |1, 0, 1, 0〉 |1, 0, 1, 1〉

−1 1 2 1 |1,−1, 1,−1〉 |1,−1, 1, 0〉 |1,−1, 1, 1〉
−2 0 1 0

Since we have extracted one vector out of each entry, we decrement each entry by 1.

MS

−1 0 1

2 0 1 0
1 0 1 0

ML 0 0 2 0
−1 0 1 0
−2 0 1 0
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Again, we start from the basis state with the largest MS and the corresponding largest ML:

MS

−1 0 1

2 0 1 0
1 0 1 0

ML 0 0 2 0
−1 0 1 0
−2 0 1 0

This gives us an eigen-vector |2, 2, 0, 0〉. Now apply both L− and S− operators (in this case only
L−), we obtain

MS

−1 0 1

2 0 1 0 |2, 2, 0, 0〉
1 0 1 0 |2, 1, 0, 0〉

ML 0 0 2 0 |2, 0, 0, 0〉
−1 0 1 0 |2,−1, 0, 0〉
−2 0 1 0 |2,−2, 0, 0〉

Now we decrement each entry by 1.

MS

−1 0 1

2 0 0 0
1 0 0 0

ML 0 0 1 0
−1 0 0 0
−2 0 0 0

|0, 0, 0, 0〉 is the last eigen-vector in our example. It cannot be read off directly, since there are
3 basis vectors corresponding to this ML and MS . But two eigen-vectors have been constructed
already, namely, |1, 0, 1, 0〉 and |2, 0, 0, 0〉. The last one, |0, 0, 0, 0〉, should be obtained from the
orthogonality relation from the previous two eigen-vectors.

Once we applied a ladder operator L− or S−, we changed only the “projection” quantum number
ML or MS . The amplitude of angular momenta L and S are never changed by ladder operators.
From Eqns. (5.9) and (5.10) we can conclude that eigen-vectors with the same L and S have the
same eigen-energy. In other words, the eigen-vectors obtained from the ladder operators have
degenerate eigen-energies. If we review the previous example, we can summarize that there are
three groups of eigen-vectors:

3P 1D 1S

|2, 2, 0, 0〉
|1, 1, 1,−1〉 |1, 1, 1, 0〉 |1, 1, 1, 1〉 |2, 1, 0, 0〉
|1, 0, 1,−1〉 |1, 0, 1, 0〉 |1, 0, 1, 1〉 |2, 0, 0, 0〉 |0, 0, 0, 0〉
|1,−1, 1,−1〉 |1,−1, 1, 0〉 |1,−1, 1, 1〉 |2,−1, 0, 0〉

|2,−2, 0, 0〉
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Each group is called a multiplet. All vectors from the same group have the same eigen-energy
(this confirmed the “9×E1, 5×E2, 1×E3” mystery we claimed in the beginning of this section).
Eigen-energies are highly degenerate, that is why “multi”-plet. The convention of naming is the
term symbol:

2S+1L (5.12)

with

degeneracy = (2S + 1)(2L+ 1) (5.13)

There is also a convention of pronouncing the multiplets. For example, 3P , 1D and 1S are
pronounced “triplet pee”, “singlet dee” and “singlet ess”. A table for mapping the superscript
2S + 1 (called multiplicity) and their names:

2S + 1 name

1 singlet
2 doublet
3 triplet
4 quartet
5 quintet
6 sextet
7 septet
8 octet
9 nonet

The first few symbols of L are: (oh, don’t ask me why there is no “J”)

L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S P D F G H I K L M N O Q R T U V

Of course, all eigen-vectors should be expressed in terms of our 15 basis states. It won’t tell us
anything if we just have a name like |2, 1, 0, 0〉. Those expression are obtained when we apply
the ladder operators. For example, (vectors should be normalized)

L−
•
• =

√
(1 + 1)(1− 1 + 1)

•
• +

√
(1 + 1)(1− 1 + 1)

•
•

L− |2, 2, 0, 0〉 =
√

2
•

• +
√

2
•
•

|2, 1, 0, 0〉 =
1√
2

•
• +

1√
2

•
• (5.14)

In second quantization, Eqn (5.14) can be written as

|2, 1, 0, 0〉 =
1√
2

(
c†1↓c

†
0↑ + c†0↓c

†
1↑

)
|0〉 (5.15)
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We made the convention that the order of creation operators are arranged according to the
configuration:

1 0 −1
↑ 1 2 3
↓ 4 5 6

= c†6c
†
5c
†
4c
†
3c
†
2c
†
1 |0〉 (5.16)

Hence,
• • •
• • • = c†−1↓c

†
0↓c
†
1↓c
†
−1↑c

†
0↑c
†
1↑ |0〉 (5.17)

In summary, our 15 eigen-vectors are listed below:

|1, 1, 1, 1〉 = c†0↑c
†
1↑|0〉

|1, 1, 1, 0〉 =
1√
2

(
−c†1↓c

†
0↑ + c†0↓c

†
1↑

)
|0〉

|1, 1, 1,−1〉 = c†0↓c
†
1↓|0〉

|1, 0, 1, 1〉 = c†−1↑c
†
1↑|0〉

3P |1, 0, 1, 0〉 =
1√
2

(
−c†1↓c

†
−1↑ + c†−1↓c

†
1↑

)
|0〉

|1, 0, 1,−1〉 = c†−1↓c
†
1↓|0〉

|1,−1, 1, 1〉 = c†−1↑c
†
0↑|0〉

|1,−1, 1, 0〉 =
1√
2

(
−c†0↓c

†
−1↑ + c†−1↓c

†
0↑

)
|0〉

|1,−1, 1,−1〉 = c†−1↓c
†
0↓|0〉

|2, 2, 0, 0〉 = c†1↓c
†
1↑|0〉

|2, 1, 0, 0〉 =
1√
2

(
c†1↓c

†
0↑ + c†0↓c

†
1↑

)
|0〉

1D |2, 0, 0, 0〉 =
1√
6

(
c†1↓c

†
−1↑ + 2c†0↓c

†
0↑ + c†−1↓c

†
1↑

)
|0〉

|2,−1, 0, 0〉 =
1√
2

(
c†0↓c

†
−1↑ + c†−1↓c

†
0↑

)
|0〉

|2,−2, 0, 0〉 = c†−1↓c
†
−1↑|0〉

1S |0, 0, 0, 0〉 =
1√
3

(
c†1↓c

†
−1↑ − c

†
0↓c
†
0↑ + c†−1↓c

†
1↑

)
|0〉

As a remark, we started from the basis state with the largest MS and the corresponding largest
ML. Equivalently, we could also start from the largest ML and the corresponding largest MS ,
since they are both eigen-states. Actually, it is just a matter of taste that we start from either

• •

Smax

or

•
•
Lmax

.
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Here, we prefer to start from the former one (maximum spin), which is naturally suggested from
the famous Hund’s rule. It states that the multiplet with the maximum S has the lowest energy,
from which we start our multiplet construction.

5.3. Seniority

We are so far lucky enough to diagonalize the Hamiltonian using ladder operators. Recall how
we constructed the multiplets for a p2 orbital. We always start from the largest MS and the
corresponding largest ML:

0 1 0

1 2 1
1 3 1
1 2 1
0 1 0

→

0 1 0
0 1 0
0 2 0
0 1 0
0 1 0

→

0 0 0
0 0 0

0 1 0
0 0 0
0 0 0

We were lucky because every time we started from a “1”. This single vector can be determined
uniquely (by the basis vector itself or by the orthogonality relation). But are we guaranteed to
always start from a “1”? No, we are not. For example, the ML-MS tables for the d3 orbital:

0 1 1 0
0 2 2 0

1 4 4 1
1 6 6 1
2 8 8 2
2 8 8 2
2 8 8 2
1 6 6 1
1 4 4 1
0 2 2 0
0 1 1 0

→

0 1 1 0
0 2 2 0
0 3 3 0
0 5 5 0

1 7 7 1
1 7 7 1
1 7 7 1
0 5 5 0
0 3 3 0
0 2 2 0
0 1 1 0

→

0 1 1 0
0 2 2 0
0 3 3 0
0 5 5 0
0 6 6 0
0 6 6 0
0 6 6 0
0 5 5 0
0 3 3 0
0 2 2 0
0 1 1 0

→

0 0 0 0

0 1 1 0
0 2 2 0
0 4 4 0
0 5 5 0
0 5 5 0
0 5 5 0
0 4 4 0
0 2 2 0
0 1 1 0
0 0 0 0

→

0 0 0 0
0 0 0 0

0 1 1 0
0 3 3 0
0 4 4 0
0 4 4 0
0 4 4 0
0 3 3 0
0 1 1 0
0 0 0 0
0 0 0 0

→

0 0 0 0
0 0 0 0
0 0 0 0

0 2 2 0
0 3 3 0
0 3 3 0
0 3 3 0
0 2 2 0
0 0 0 0
0 0 0 0
0 0 0 0

We encounter a “2”, disaster! This “2” means there are two undetermined eigen-vectors with
ML = 2 and MS = 1/2. By the orthogonality relation, we can at most find out an eigen-space
(a plane) which is spanned by the two eigen-vectors. But we cannot tell where exactly those
two eigen-vectors are. That is the limitation of using ladder operators. After all, we were doing
something peculiar: we diagonalized the matrix without using the matrix elements but only
symmetries. At this stage, we really have to ask help from the matrix elements. With the given
numerical values, we will be able to diagonalize the matrix completely. But as we mentioned
already, although we cannot obtain the eigen-vectors, we can find the eigen-space spanned by
these two eigen-vectors. To continue our work, we can generate two random vectors and by
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applying the orthogonality relation, we get two random vectors in the eigen-space. For example,

|2, 2, 1

2
,
1

2
〉1 =

(
0.211c†2↓c

†
−1↑c

†
1↑ − 0.259c†1↓c

†
0↑c
†
1↑ − 0.702c†2↓c

†
−2↑c

†
2↑

+0.490c†1↓c
†
−1↑c

†
2↑ − 0.279c†0↓c

†
0↑c
†
2↑ + 0.279c†−1↓c

†
1↑c
†
2↑

)
|0〉 (5.18)

|2, 2, 1

2
,
1

2
〉2 =

(
0.382c†2↓c

†
−1↑c

†
1↑ − 0.468c†1↓c

†
0↑c
†
1↑ − 0.236c†2↓c

†
−2↑c

†
2↑

−0.146c†1↓c
†
−1↑c

†
2↑ + 0.528c†0↓c

†
0↑c
†
2↑ − 0.528c†−1↓c

†
1↑c
†
2↑

)
|0〉 (5.19)

Now apply both L− and S− to these two vectors, we obtain all other vectors in this (2-
dimensional) multiplet:

0 0 0 0
0 0 0 0
0 0 0 0

0 2 2 0

0 3 3 0

0 3 3 0

0 3 3 0

0 2 2 0
0 0 0 0
0 0 0 0
0 0 0 0

→

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 1 0
0 1 1 0
0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

This step gives us two 2D multiplets. We will denote it as
2×
2D. Once we encounter a multiplet

which appears multiple times, it implies we could only find its eigen-spaces but not eigen-vectors
by using the ladder operator technique. We don’t need to worry about this problem for s and
p shells. But for d and higher shells, we will encounter this problem quite often. A summary of
atomic multiplets for open s, p, d and f shells are tabulated in 5.1.

Recall the random vectors we generated in Eqns. (5.18) and (5.19). If we repeat the generation
of random vectors, we might obtain a different set of vectors. They span the same space but the
vectors will have different directions. There is a very smart method which allows us to construct
those vectors uniquely (also with beautiful coefficients like 1/

√
3), although they are still not

eigen-vectors.

This new concept is called seniority [13]. The idea is that since we cannot uniquely determine the

vectors in the eigen-spaces of
2×
2D in d3 shell, we start from the 2D in d1 shell whose eigen-vectors

can be uniquely determined.

d1 2D

d2 1S 3P 1D 3F 1G

d3 2P 4P
2×
2D 2F 4F 2G 2H

The d1 and d3 shells are different by, of course, two electrons. To go from d1 to d3, we need to
add two more electrons. But the additional electrons should not affect the angular momenta in
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2D. Therefore, we should add electrons according to the 1S multiplet in d2, which has L = 0
and S = 0. This put-electron operation is called a seniority operation, one can think the 2D in

d1 as the parent and the
2×
2D in d3 as the children. The 1S multiplet has one eigen-state

|0, 0, 0, 0〉 =
1√
5

(
c†2↓c

†
−2↑ − c

†
1↓c
†
−1↑ + c†0↓c

†
0↑ − c

†
−1↓c

†
1↑ + c†−2↓c

†
2↑

)
|0〉 (5.20)

The “put-electron-operator” (seniority operator) is simply

T = c†2↓c
†
−2↑ − c

†
1↓c
†
−1↑ + c†0↓c

†
0↑ − c

†
−1↓c

†
1↑ + c†−2↓c

†
2↑ (5.21)

Apply this seniority operator to the leading vector of 2D in d1:

T |2, 2, 1

2
,
1

2
〉 = T c†2↑|0〉

=
(
c†2↓c

†
−2↑ − c

†
1↓c
†
−1↑ + c†0↓c

†
0↑ − c

†
−1↓c

†
1↑ + c†−2↓c

†
2↑

)
c†2↑|0〉

=
(
c†2↓c

†
−2↑c

†
2↑ − c

†
1↓c
†
−1↑c

†
2↑ + c†0↓c

†
0↑c
†
2↑ − c

†
−1↓c

†
1↑c
†
2↑

)
|0〉 (5.22)

We obtain the first leading vector of 2D in d3: (vectors should be normalized)

|2, 2, 1

2
,
1

2
, 0〉 =

1√
4

(
c†2↓c

†
−2↑c

†
2↑ − c

†
1↓c
†
−1↑c

†
2↑ + c†0↓c

†
0↑c
†
2↑ − c

†
−1↓c

†
1↑c
†
2↑

)
|0〉 (5.23)

The fifth index W = 0 is called the seniority number. One can think it as the index of an
array.4 The remaining leading vector |2, 2, 1

2 ,
1
2 , 1〉 can then be uniquely determined from the

orthogonality relation. in shell d3.

|2, 2, 1

2
,
1

2
, 1〉 =

1√
84

(
4c†2↓c

†
−1↑c

†
1↑ −

√
24c†1↓c

†
0↑c
†
1↑ − 5c†2↓c

†
−2↑c

†
2↑

+c†1↓c
†
−1↑c

†
2↑ + 3c†0↓c

†
0↑c
†
2↑ − 3c†−1↓c

†
1↑c
†
2↑

)
|0〉 (5.24)

The vectors in Eqns. (5.23) and (5.24) span the same space as the vectors in Eqns. (5.18) and
(5.19). Now those vectors can be uniquely determined and addressed by five quantum numbers
|L,ML, S,MS ,W 〉. By applying ladder operators to these two leading vectors, we obtain the

complete set of vectors in the multiplet
2×
2D. One must be alerted that |L,ML, S,MS ,W 〉 is,

in general, not an eigen-vector. But the complete set |L,ML, S,MS , 0〉 . . . |L,ML, S,MS , n− 1〉

spans the complete eigen-space of multiplets
n×

2S+1L .

4A more standard way to assign the seniority number is to name according to their parents. For example,
our first vector is produced from 2D in d1, hence it has a seniority number 1. The second vector is produced in
d3 from the orthogonality relation, hence a seniority number 3. However, this ancestry relation gets much more
complicated for an f shell. We would like to assign the seniority number just as the array index. Actually it
doesn’t matter how we name the seniority number since it does not really have a physical meaning. We chose it
for convenience as long as it can label a vector uniquely.
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5.4. Eigen-energy of multiplet states

As we emphasized earlier, the eigen-energies of the Hamiltonian could be obtained by throwing
the matrix into a diagonalization solver. However, from this “brute-force” approach, it cannot
be seen that which eigen-energy corresponds to which multiplet. Now, since we have constructed
the eigen-vectors already (up to seniority), we can easily compute the eigen-energies by matrix-
vector multiplications. For a given eigen-vector |vn〉, the corresponding eigen-energy is simply

En = 〈vn|HU |vn〉 (5.25)

The Hamiltonian consists of two major parts: the Slater-Condon parameters and the Gaunt
coefficients. For on-shell interactions, the Slater-Condon parameters enter as pre-factors F (k)

since they depend on only n and l (see Eqn. (4.28)). It is more convenient to take out those
pre-factors and to write our Hamiltonian as,

HU =

2l∑
k=0(+2)

F (k)H̃
(k)
U (5.26)

where H̃
(k)
U has only a dependence on the Gaunt coefficients, which are system independ-

ent. For a given shell, the sum rule in Eqn. (4.34) requires k = 0, 2, . . . , 2l. The routine

for setting up H̃
(k)
U is identical to Algorithm 5.2, except that one needs to replace Uαβγδ by

δσ1σ4δσ2σ3
4π

2k+1A
(k)(lm1, lm2, lm3, lm4). The eigenvalues Ẽ

(k)
n from H̃

(k)
U are universal for all

atoms. We can easily compute Ẽ
(k)
n by applying our eigen-vectors to H̃

(k)
U :

Ẽ(k)
n = 〈vn| H̃(k)

U |vn〉 (5.27)

It is not trivial that the eigen-vectors of HU are simultaneously eigen-vectors of H̃
(k)
U . This is

because H̃
(k)
U also commute with L and S (up to seniority). Now, system independently, we can

write the eigen-energies as (think F (k) as pre-factors)

En =

2l∑
k=0(+2)

F (k)Ẽ(k)
n (5.28)

Those pre-factors F (k) are subject to the input wave functions which are determined by different
atoms, electronic configurations and approximation methods (e.g. self-consistent field approx-
imation). Table 5.2 summarizes the multiplet eigen-energies for a few selected atomic shells.
The terms are sorted in the descending order of multiplicity 2S + 1. For a given multiplicity,
terms are sorted in the descending order of L. The first term of each individual table is the
multiplet with the lowest energy (Hund’s rule).

To get a direct impression of how Table 5.2 works, we take the p2 configuration as an example.
A carbon atom with electronic configuration 1s2 2s2 2p2 would be a good candidate for this
demonstration. From the self-consistent calculation, we obtained the eigen-energy of the 2p
orbital to be −0.199186 Hartree (see Table 3.1). From the resulting wave function u2p, we can
easily compute the Slater-Condon parameters using Eqn. (4.28),

F (0)(2p) = 0.520216 (Hartree)

F (2)(2p) = 0.229662 (Hartree)
(5.29)
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Putting (5.29) into Table 5.2, we obtain the multiplet energies,

3P : 0.474284 (Hartree)
1D : 0.529402 (Hartree)
1S : 0.612081 (Hartree)

(5.30)

These are the three split eigen-energies of the 2p2 configuration.5 It is important to understand
that they are the eigen-energies from the Coulomb repulsion Hamiltonian

HU =

N∑
i<j

1

|ri − rj |
(5.31)

But not the full Hamiltonian

H =
N∑
i=1

[
−1

2
∇2
i −

Z

ri

]
+

N∑
i<j

1

|ri − rj |
(5.32)

The eigen-energies in (5.30) are not the absolute energies. They are correct up to a constant
shift. Nevertheless, their energy splittings are normally the quantities that we are interested in.

p2

3P

1D

1S

∆E = 0.055118

∆E = 0.082679

Figure 5.1.: Energy splitting of the p2 configuration of a carbon atom. Energies are given in
units of Hartree (a.u.).

We should keep in mind that we didn’t obtain all eigen-vectors from the ladder operator tech-
nique. For the case where the seniority numbers are required, we can at most construct a small
eigen-space that the eigen-vectors live in. From this eigen-space, namely, a set of vectors |vi〉,
we compute the matrix

Ẽ
(k)
ij = 〈vi| H̃(k)

U |vj〉 (5.33)

which contains the eigen-energies. Similar to Table 5.2, we also provide the eigen-energies of
multiplets with seniority in Table 5.3. But instead of numbers being coefficients, we have small
matrices as the coefficients. For a given set of F (k), we can sum up the small matrices and
diagonalize to obtain the eigen-energies numerically.

5We limited our basis within the open shell. This gives reasonably good approximations since multiplet splittings
are normally much smaller than the energy differences among electronic shells (first order perturbation theory).
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Table 5.2.: Multiplet (without seniority cases) eigen-energies for a few selected atomic shells.

p2 3P F (0) − 1

5
F (2)

1D F (0) +
1

25
F (2)

1S F (0) +
2

5
F (2)

p3 4S 3F (0) − 3

5
F (2)

2D 3F (0) − 6

25
F (2)

2P 3F (0)

d2 3F F (0) − 8

49
F (2) − 1

49
F (4)

3P F (0) +
1

7
F (2) − 4

21
F (4)

1G F (0) +
4

49
F (2) +

1

441
F (4)

1D F (0) − 3

49
F (2) +

4

49
F (4)

1S F (0) +
2

7
F (2) +

2

7
F (4)

d5 6S 10F (0) − 5

7
F (2) − 5

7
F (4)

4G 10F (0) − 25

49
F (2) − 190

441
F (4)

4F 10F (0) − 13

49
F (2) − 20

49
F (4)

4D 10F (0) − 18

49
F (2) − 25

49
F (4)

4P 10F (0) − 4

7
F (2) − 5

21
F (4)

2I 10F (0) − 24

49
F (2) − 10

49
F (4)

2H 10F (0) − 22

49
F (2) − 10

147
F (4)

2P 10F (0) +
20

49
F (2) − 80

147
F (4)

2S 10F (0) − 3

49
F (2) − 65

147
F (4)

d3 4F 3F (0) − 15

49
F (2) − 8

49
F (4)

4P 3F (0) − 1

3
F (4)

2H 3F (0) − 6

49
F (2) − 4

147
F (4)

2G 3F (0) − 11

49
F (2) +

13

441
F (4)

2F 3F (0) +
9

49
F (2) − 29

147
F (4)

2P 3F (0) − 6

49
F (2) − 4

147
F (4)

d4 5D 6F (0) − 3

7
F (2) − 3

7
F (4)

3H 6F (0) − 17

49
F (2) − 23

147
F (4)

3G 6F (0) − 12

49
F (2) − 94

441
F (4)

3D 6F (0) − 5

49
F (2) − 43

147
F (4)

1I 6F (0) − 15

49
F (2) − 1

49
F (4)

1F 6F (0) − 4

21
F (4)
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Table 5.3.: Multiplet (seniority cases) eigen-energies for a few selected atomic shells.

d3
2×
2D

[
3 0
0 3

]
F (0) −

[
−1

7
3
√

21
49

3
√

21
49 − 3

49

]
F (2) +

[
1
7

5
√

21
147

5
√

21
147 − 19

147

]
F (4)

d4
2×
3F

[
6 0
0 6

]
F (0) −

[
2
49

12
49

12
49

8
49

]
F (2) +

[
− 13

147
20
147

20
147 − 38

147

]
F (4)

2×
3P

[
6 0
0 6

]
F (0) +

[
−1

7
4
√

14
49

4
√

14
49 − 3

49

]
F (2) −

[
2
63

20
√

14
441

20
√

14
441

139
441

]
F (4)

2×
1G

[
6 0
0 6

]
F (0) −

[
6
49

4
√

11
49

4
√

11
49

4
49

]
F (2) +

[
17
147

20
√

11
441

20
√

11
441 − 64

441

]
F (4)

2×
1D

[
6 0
0 6

]
F (0) +

[
15
49

12
√

2
49

12
√

2
49

3
49

]
F (2) −

[
6
49

20
√

2
147

20
√

2
147

11
49

]
F (4)

2×
1S

[
6 0
0 6

]
F (0) −

[
−2

7
6
√

21
49

6
√

21
49 − 6

49

]
F (2) +

[
2
7

10
√

21
147

10
√

21
147 − 38

147

]
F (4)

d5
2×
2G

[
10 0
0 10

]
F (0) +

[
3
49 0
0 −13

49

]
F (2) −

[
155
441 0
0 145

441

]
F (4)

2×
2F

[
10 0
0 10

]
F (0) −

[
25
49 0
0 9

49

]
F (2) −

[
5

147 0
0 55

147

]
F (4)

d5
3×
2D

10 0 0
0 10 0
0 0 10

F (0) −

 0 0 6
√

14
49

0 4
49 0

6
√

14
49 0 6

49

F (2) +

 0 0 10
√

14
147

0 − 40
147 0

10
√

14
147 0 −20

49

F (4)



Chapter 6

Spin-orbit coupling

6.1. The spin-orbit interaction

In the very beginning of our discussion, we claimed that our problem is to solve the Schrödinger
equation with the Hamiltonian

H =
N∑
i=1

[
−1

2
∇2
i −

Z

ri

]
+

N∑
i<j

1

|ri − rj |
(6.1)

We see clearly that each electron experiences a Coulomb attraction from the nucleus and repul-
sions from all other electrons. However, this is not quite the complete story. In fact, additionally,
each electron also experiences a (weak) magnetic force. Do you see where this magnetic force
comes from?

Imagine you “sit” on an electron. From your point of view, the positively charged nucleus is
circling around you. This moving charge creates a current loop which generates a magnetic field
B (can be calculated from the Biot-Savart law). On the other hand, the spinning electron has
a magnetic dipole moment µe which experiences the force from the magnetic field

F = ∇(µe ·B) (6.2)

The corresponding potential energy of the electron under this magnetic field is

HSO = −µe ·B (6.3)

It would be more convenient if we express the magnetic dipole moment in terms of the spin
angular momentum S and the magnetic field in terms of the orbit angular momentum L [6],

HSO = ξ(r)L · S (6.4)

where,1

ξ(r) =
1

2m2
ec

2

1

r

dV

dr
(6.5)

1Some authors include an “h̄2” in the expression of ξ(r). But we prefer to absorb this h̄2 into the angular
momenta, since L = r× p = r× (−ih̄)∇ and L · S includes the h̄2 implicitly. Notice that in atomic units h̄ = 1.
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and V (r) is our old friend, the (spherically symmetric) electric potential. For hydrogen-like
atoms,

V (r) = − 1

4πε0

Ze2

r
and ξ(r) =

1

2m2
ec

2

1

4πε0

Ze2

r3
(6.6)

which agrees with the hydrogen atom spin-orbit interaction discussed in Griffiths’ book [1]. Now
consider an N -electron system, Eqn. (6.4) becomes

HSO =

N∑
i=1

ξ(ri)`i · si (6.7)

We reserved the capital letters for the total angular momentum operators

L =
N∑
i=1

`i and S =
N∑
i=1

si (6.8)

This is the additional spin-orbit interaction Hamiltonian. It is rather a tiny perturbation. In
Eqn. (6.5), we see a “speed of light squared” factor in the denominator. Hence, spin-orbit is in
general a weak interaction. We introduced the atomic units (a.u.) in the beginning and this is
the first time that we encounter the speed of light. We know that in SI units, the speed of light
is

c = 2.99792458× 108 m/s (6.9)

To convert the speed of light from SI to atomic unit, we need the length and time in atomic
units:

1 a0 ≈ 5.2918× 10−11 m (6.10)

1 t0 ≈ 2.4189× 10−17 s (6.11)

We can convert easily, in a.u.2

c ≈ 137.036 a0/t0 (6.12)

Now we append HSO to Hamiltonian (6.1),

H =
N∑
i=1

[
−1

2
∇2
i −

Z

ri

]
+

N∑
i<j

1

|ri − rj |
+

N∑
i=1

ξ(ri)`i · si (6.13)

which is the full Hamiltonian with spin-orbit coupling correction.

6.2. Spin-orbit coupling within multiplet terms

If there were no spin-orbit coupling, our Hamiltonian (6.1) commuted with operators L and
S, which indicates that these quantities are conserved [1]. That is why we could label our
eigen-vectors as

|L,ML, S,MS〉 (6.14)

2The inverse of this number is called the fine structure constant α ≡ e2

4πε0h̄c
≈ 1/137.036, which is a dimensionless

quantity. By the way, it is such a profound number that all good theoretical physicists put this number up on
their wall and worry about it, said Mr. Feynman.
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Now, in the presence of spin-orbit coupling, our Hamiltonian (6.13) no longer commutes with
L and S. The spin-orbit interaction mixed them up. However, the Hamiltonian still commutes
with the total angular momentum

J = L + S (6.15)

If we only consider the spin-orbit interaction within multiplet terms (for the same L and S), we
can represent our eigen-vectors by3

|L, S, J,MJ〉 (6.16)

which is a Clebsch-Grodan basis transformation [6] from basis (6.14). The possible values of J
are L+ S,L+ S − 1, . . . , |L− S|. For instance, for multiplet 3P with L = 1 and S = 1, we have
J = 2, 1, 0. This splits the degenerate 3P into 3P2,

3P1,
3P0. We now denote a term symbol as

2S+1LJ (6.17)

with

degeneracy = 2J + 1 (6.18)

which is less degenerate than a 2S+1L term that we used previously. The sum over all (2J + 1)
within the same multiplet is equal to (2S + 1)(2L + 1). Now, our task is to obtain the eigen-
energies of the 2S+1LJ terms. Notice that,

J2 = L2 + 2L · S + S2 (6.19)

Hence, we can evaluate the following matrix element easily,

〈LSJMJ |L · S |LSJMJ〉 =
1

2
〈LSJMJ | J2 − L2 − S2 |LSJMJ〉

=
1

2
[J(J + 1)− L(L+ 1)− S(S + 1)] (6.20)

But this is not really what we are looking for. The spin-orbit eigen-energies within multiplet
terms should be the matrix element

〈LSJMJ |HSO |LSJMJ〉 = 〈LSJMJ |
N∑
i=1

ξ(ri)`i · si |LSJMJ〉 (6.21)

which is proportional to the matrix element in Eqn. (6.20) (see Reference [6])

〈LSJMJ |
N∑
i=1

ξ(ri)`i · si |LSJMJ〉 = A(nl, LS) 〈LSJMJ |L · S |LSJMJ〉 (6.22)

The proportionality factor A(nl, LS) depends on the radial wave function unl and the angular
momenta L and S. The eigen-energies lifted by the spin-orbit interaction are therefore,

ESO = A(nl, LS)
1

2
[J(J + 1)− L(L+ 1)− S(S + 1)] (6.23)

3Notice that |L, S, J,MJ〉 is in general not an eigen-vector of the full Hamiltonian since the spin-orbit interaction
mixes different L and S. But if we assume the spin-orbit splitting� the multiplet splitting, we can approximately
take |L, S, J,MJ〉 as our eigen-vector (first order perturbation theory).
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Our problem is to find A(nl, LS). Actually, we would get the same proportionality factor if we
considered the matrix elements

〈LMLSMS |
N∑
i=1

ξ(ri)`i · si |LMLSMS〉 = A(nl, LS) 〈LMLSMS |L · S |LMLSMS〉 (6.24)

from which we are able to derive the expression for A(nl, LS). Let’s first consider

〈LMLSMS |L · S |LMLSMS〉

To evaluate this matrix element, we expand the dot product

L · S = LxSx + LySy + LzSz (6.25)

Express the x and y components in terms of ladder operators

Lx =
L+ + L−

2
and Ly =

L+ − L−
2i

(6.26)

We obtain,

〈LMLSMS |L · S |LMLSMS〉 = 〈LMLSMS |
1

2
L+S− +

1

2
L−S+ + LzSz |LMLSMS〉

= 〈LMLSMS |LzSz |LMLSMS〉
= MLMS (6.27)

Done! Keep in mind that our task is to find A(nl, LS) in Eqn. (6.24). Now, we consider

〈LMLSMS |
N∑
i=1

ξ(ri)`i · si |LMLSMS〉

which can be split into two independent parts

〈nl| ξ(r) |nl〉 〈LMLSMS |
N∑
i=1

`i · si |LMLSMS〉

The expectation vale 〈nl| ξ(r) |nl〉 can be calculated easily by numerical integration methods.
But we encounter some difficulties with the second part, where the single electron operators act
on the eigen-state which is in general a linear combination of configuration basis vectors. For
example, in p3 configuration we have,

|1, 1, 1

2
,
1

2
〉 =

1√
2

(
c†1↓c

†
−1↑c

†
1↑ − c

†
0↓c
†
0↑c
†
1↑

)
|0〉 (6.28)

It would be convenient if we expand the eigen-vectors in terms of configuration basis vectors.

|LMLSMS〉 =

dim∑
n=1

an c
†
mNσN

. . . c†m2σ2
c†m1σ1

|0〉

=
dim∑
n=1

an |L{mi}S{σi}〉 (6.29)
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Hence,

〈LMLSMS |
N∑
i=1

`i · si |LMLSMS〉

=

(
dim∑
n=1

an 〈L{mi}S{σi}|

)
N∑
i=1

`i · si

(
dim∑
n=1

an |L{mi}S{σi}〉

)

=
dim∑
n=1

(
|an|2 〈L{mi}S{σi}|

N∑
i=1

`i · si |L{mi}S{σi}〉

)

=
dim∑
n=1

(
|an|2

N∑
i=1

〈LmiSσi| `i · si |LmiSσi〉

)

=

dim∑
n=1

(
|an|2

N∑
i=1

〈LmiSσi|
1

2
`i+s

i
− +

1

2
`i−s

i
+ + `izs

i
z |LmiSσi〉

)

=

dim∑
n=1

(
|an|2

N∑
i=1

〈LmiSσi| `izsiz |LmiSσi〉

)

=
dim∑
n=1

(
|an|2

N∑
i=1

miσi

)
(6.30)

Putting everything into Eqn. (6.24), we find

A(nl, LS) = 〈nl| ξ(r) |nl〉

∑dim
n=1

(
|an|2

∑N
i=1miσi

)
MLMS

(6.31)

A(nl, LS) has no dependence on ML or MS . The most convenient choice would be using the
maximum values ML = L and MS = S. One might worry about the denominator since L or S
might be zero. However, either L or S is zero indicates that there is no spin-orbit interaction
(J = L+ S = |L− S|), hence no splitting, no worry.

I understand that the expression of A(nl, LS) looks a bit complicated. It would be nice to have
a few worked examples. For convenience, we break Eqn. (6.31) into two parts,

X(nl) = 〈nl| ξ(r) |nl〉 (6.32)

M(LS) =

∑dim
n=1

(
|an|2

∑N
i=1miσi

)
MLMS

(6.33)

Example 1: 3P multiplet in p2 configuration.

The leading vector
|1, 1, 1, 1〉 = c†0↑c

†
1↑|0〉

M(3P ) =
0× 1

2 + 1× 1
2

1× 1
=

1

2

Hence,

A(np, 3P ) =
1

2
X(np)
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Example 2: 2G multiplet in d3 configuration.

The leading vector

|4, 4, 1

2
,
1

2
〉 =

1√
5

(√
2c†2↓c

†
0↑c
†
2↑ −

√
3c†1↓c

†
1↑c
†
2↑

)
|0〉

M(2G) =
2
5(2×−1

2 + 0× 1
2 + 2× 1

2) + 3
5(1×−1

2 + 1× 1
2 + 2× 1

2)

4× 1
2

=
3

10

Hence,

A(nd, 2G) =
3

10
X(nd)

There is a symmetry property of the factor M(LS). If the shell is less than half-filled, M(LS) >
0; if the shell is more than half-filled, M(LS) < 0; and if the shell is exactly half-filled, M(LS) =
0 (no splitting).

The remaining part X(nl), is relatively more straightforward.

X(nl) = 〈nl| ξ(r) |nl〉 =

∫ ∞
0

dr r2Rnl(r)ξ(r)Rnl(r)

=

∫ ∞
0

dr unl(r)ξ(r)unl(r) =

∫ ∞
0

dr |unl(r)|2ξ(r) (6.34)

and in atomic unit,

ξ(r) =
1

2× 137.0362

1

r

dV

dr
(6.35)

In our self-consistent field approximation, the potential V (r) is the mean-field electric potential
that all electrons experience in. The first order derivative can be obtained approximately from
a finite difference formula

dV

dx
≈ V (x+ ∆x)− V (x−∆x)

2∆x
(6.36)

Remember the logarithmic grid transformation in Eqn (2.5), we have,

dr = rdx and
dV

dr
=

1

r

dV

dx
(6.37)

Hence, numerically,

X(nl) =
1

2× 137.0362

∫ xmax

xmin

dx |unl(x)|2 1

r

dV

dx
(6.38)

To get an intuitive understanding of this spin-orbit energy splitting, we again take the carbon
atom as an example. A carbon atom has electronic configuration 1s2 2s2 2p2. From the self-
consistent calculation, we obtained both the mean-field potential V (r) and the wave function
u2p(r). From Eqn. (6.38), we can calculate

X(2p) = 0.000218 (Hartree) (6.39)

Meanwhile, we have discovered that a p2 configuration produces 3P , 1D and 1S multiplets.
Among these three multiplets, only 3P splits due to spin-orbit interaction. Both 1D and 1S do
not split since S = 0. In the previous examples, we found for the p2 configuration,

M(3P ) =
1

2
(6.40)
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Therefore,

A(2p2, 3P ) = 0.000218× 1

2
= 0.000109 (Hartree) (6.41)

Now the spin-orbit energy splittings within 3P are (Eqn. (6.23))

ESO(3P2) = 0.000109
1

2
[2(2 + 1)− 1(1 + 1)− 1(1 + 1)] = 0.000109 (Hartree)

ESO(3P1) = 0.000109
1

2
[1(1 + 1)− 1(1 + 1)− 1(1 + 1)] = −0.000109 (Hartree)

ESO(3P0) = 0.000109
1

2
[0(0 + 1)− 1(1 + 1)− 1(1 + 1)] = −0.000218 (Hartree)

(6.42)

with this additional splitting, Fig. 5.1 gets an extra column.

p2

1S

1D

3P

1S0

1D2

3P2

3P1

3P0

∆E = 0.082679

∆E = 0.055118

∆E = 0.000218

∆E = 0.000109

Configuration Coulomb repulsion Spin-orbit

Figure 6.1.: Energy splitting (Coulomb repulsion plus spin-orbit interaction) of the p2 configur-
ation of a carbon atom. Energies are given in units of Hartree (a.u.). The spin-orbit
splitting is magnified for a better plotting. (see Fig. 6.2 for realistic scale.)

The spin-orbit splitting in Fig. 6.1 is magnified for a better plotting. The actual splitting is
rather tiny (remember the 1/c2 factor). But I want to emphasize that there are two issues about
the spin-orbit splitting, namely, the “scale” and the “shape”. This can be seen from Eqn. (6.23).
The part

[J(J + 1)− L(L+ 1)− S(S + 1)]

leads to the splitting “shape”, which is determined by the multiplet term 2S+1L. While the
other part

A(nl, LS)

controls the “scale” of the splitting. We have seen that A(nl, LS) can be separated into X(nl)
and M(LS). For a given multiplet term, M(LS) is fixed. The final term that governs the scale
is

X(nl) = 〈nl| ξ(r) |nl〉
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which is the coupling strength constant. For a not-so-heavy atom, X(nl) is usually weak (see
Eqn.(6.39) for a carbon atom). We can safely simplify the spin-orbit interaction within a mul-
tiplet term and obtain surprisingly accurate energies. But for a heavy atom, like uranium, this
spin-orbit coupling constant becomes strong due to the deep radial potential. If the order of the
spin-orbit splitting reaches the order of the multiplet energy splitting, our “spin-orbit within
multiplet terms” may no longer be a good approximation. In this case, we should consider the
spin-orbit interactions within the entire shell and diagonalize the complete Hamiltonian.

6.3. Spin-orbit coupling within the entire shell

By saying “within entire shell”, it means to solve the problem in the complete basis of a given
configuration, say, p2,

• • • • •
•

•
•

•
•

• • •
•

•
•

•
•

•
•

•
•

•
• • • • • • •

We have previously used the same basis when solving the Coulomb repulsion problem. Since we
have the basis already, the remaining task is to set up the matrix representation of the spin-orbit
Hamiltonian in our basis. To construct the matrix representation, the first step is to reformulate
the Hamiltonian

HSO =

N∑
i=1

ξ(ri)`i · si (6.43)

into second quantization,

HSO =
∑
α,β

Vαβc
†
αcβ (6.44)

where,

α = {n1, l1, m1, σ1}
β = {n2, l2, m2, σ2}

enumerate all possible quantum states of electrons. Here we consider only interactions within the
same shell, so we restrict n1l1 = n2l2 = nl. If you still remember, we devoted an entire chapter
calculating the Coulomb repulsion matrix element Uαβγδ since it was extremely complicated.
However, today, our spin-orbit matrix element

Vαβ = 〈α| ξ(r)` · s |β〉 (6.45)

can be calculated with zero difficulty. This spin-orbit matrix element can be split into a radial
dependent part and an angular dependent part

Vαβ = 〈nl| ξ(r) |nl〉 〈m1σ1| ` · s |m2σ2〉 (6.46)
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The radial part 〈nl| ξ(r) |nl〉 is identical to X(nl) which we have discussed in Eqn. (6.34). And
the angular part,

〈m1σ1| ` · s |m2σ2〉 = 〈m1σ1| `xsx + `ysy + `zsz |m2σ2〉

= 〈m1σ1|
1

2
`+s− +

1

2
`−s+ + `zsz |m2σ2〉

=
1

2

√
(l +m2 + 1)(l −m2)

(
1

2
+ σ2

)(
1

2
− σ2 + 1

)
〈m1σ1 |m2 + 1, σ2 − 1〉

+
1

2

√
(l +m2)(l −m2 + 1)

(
1

2
+ σ2 + 1

)(
1

2
− σ2

)
〈m1σ1 |m2 − 1, σ2 + 1〉

+m2σ2 〈m1σ1 |m2σ2〉 (6.47)

can be computed easily with the orthonormality of angular wave functions,

〈m1σ1 |m2σ2〉 = δm1m2δσ1σ2 (6.48)

Setting up the spin-orbit Hamiltonian is simpler than setting up the Coulomb repulsion Hamilto-
nian since we have only α and β indices

〈i|HSO |j〉 = 〈i|
∑
α,β

Vαβc
†
αcβ |j〉 (6.49)

Hence, the algorithm is also simpler with less for loops (comparing with Algorithm 5.2).

Algorithm 6.1 Set up Hamiltonian

1: function Hamiltonian(basis)
2: dim← basis.dim
3: for i← 0 to dim do
4: confi ← basis.conf [i]
5: for all α do
6: if isBit(α, confi) then
7: confα ← clearBit(α, confi)
8: for all β do
9: if !isBit(β, confα) then

10: confβ ← setBit(β, confα)
11: confj ← confβ
12: j ← basis.index[confj ]
13: HSO[i, j]← HSO[i, j] + fsign ∗ Vαβ
14: return HSO

If we diagonalize HSO directly, we would obtain the eigen-energies of the pure spin-orbit in-
teraction. To include both Coulomb repulsion and spin-orbit coupling, we should diagonalize
(numerically) the sum (HU + HSO). For not-so-heavy atoms, like carbon, the resulting eigen-
energies are surprisingly close to the eigen-energies we obtained from the “within multiplet
terms” approximation, which is pretty remarkable, since the solutions from two different ap-
proaches agree each other. However, for heavy atoms, there is a large discrepancy between those
two solutions.
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For heavy atoms, the deep potential leads to large values in the derivative dV/dr. Hence, the
spin-orbit coupling constant 〈nl| ξ(r) |nl〉 is large. For strong spin-orbit interactions, the order
of energy splitting can reach the order of the Coulomb repulsion splitting. In this case the
approximation using spin-orbit coupling within multiplet terms are no longer appropriate.

This can be clearly demonstrated by a comparison between a carbon (C) and a lead (Pb) atom,
which are from the same group with the same open shell configuration p2. Table 6.1 tabulated
the numerical energies of spin-orbit interactions within multiplet terms and within entire shell.

Table 6.1.: Comparison of open shell spin-orbit energies within multiplet terms and within entire
shell for a carbon atom and a lead atom. Energies are given in units of Hartree (a.u.).

Elem Orbital Energy within
multiplet terms
(×degeneracy)

Energy within
entire shell

(×degeneracy)

Abs Error Rel Error

C 2p2 0.612081 (×1) 0.612081 (×1) 0.000000 0.000000
0.529402 (×5) 0.529403 (×5) 0.000001 0.000002
0.474393 (×5) 0.474392 (×5) 0.000001 0.000002
0.474175 (×3) 0.474175 (×3) 0.000000 0.000000
0.474066 (×1) 0.474065 (×1) 0.000001 0.000002

Pb 6p2 0.323500 (×1) 0.335963 (×1) 0.012463 0.037096
0.272826 (×5) 0.284981 (×5) 0.012155 0.042652
0.252988 (×5) 0.240833 (×5) 0.012155 0.050471
0.225100 (×3) 0.225100 (×3) 0.000000 0.000000
0.211156 (×1) 0.198693 (×1) 0.012463 0.062725

The discrepancy can be seen more easily from the spectrum plot in Fig. 6.2. The spin-orbit
splitting within multiplet terms and within the entire shell are plotted in the 3rd and 4th column
of the plot, respectively. It is difficult to resolve the spin-orbit splitting in the carbon atom plot,
since the energy differences are so tiny. But this tiny splitting gives a good approximation when
considering spin-orbit coupling within multiplet terms. On the other hand, the amplitude of
spin-orbit splitting in the lead atom reaches the amplitude of Coulomb repulsion splitting. In
this case, the energies from the “within multiplet terms” approximation do not match the (more
accurate) full shell diagonalization.

In the 4th column in Fig. 6.2, we labeled each energy level by their numerical values. But we
didn’t put a label like 2S+1L or 2S+1LJ . This is because when we consider the eigen-energies
from the sum (HU +HSO), the energy levels are mixed with contributions from different angular
momenta L and S. We can no longer label each energy level as purely 2S+1L or 2S+1LJ .
Nevertheless, from the plot, we do see some strong correspondence between the multiplet terms
and the energy levels from (HU +HSO). This correspondence can be calculated from the overlap
between the eigen-vectors of multiplet terms and the eigen-vectors of (HU + HSO), which is
known as the character of eigen-vectors.

For a multiplet term 2S+1L (with seniority number W if necessary), we have eigen-vectors
|L,ML, S,MS〉 with ML = L, . . . ,−L and MS = S, . . . ,−S. Those vectors span a “small space”
of this specific multiplet term. Now, suppose we have an eigen-vector |v〉 of (HU + HSO) from
our numerical diagonalization. To check if this eigen-vector |v〉 lives inside this “small space”,
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p2

1S 0.612081

1D 0.529402

3P 0.474284

1S0 0.612081

1D2 0.529402

3P2 0.474393
3P1 0.474175
3P0 0.474066

0.612081

0.529403

0.474392
0.474175
0.474065

Configuration Coulomb repulsion Spin-orbit HU +HSO

(a) Carbon (C)

p2

1S 0.323500

1D 0.272826

3P 0.239044

1S0 0.323500

1D2 0.272826

3P2 0.252988

3P1 0.225100

3P0 0.211156

0.335963

0.284981

0.240833

0.225100

0.198693

Configuration Coulomb repulsion Spin-orbit HU +HSO

(b) Lead (Pb)

Figure 6.2.: Comparison of open shell energy splitting between a “light” atom carbon (C) and a
“heavy” atom lead (Pb). Energies are given in units of Hartree (a.u.). From left to
right, 1st column: electronic configuration; 2nd column: Coulomb repulsion energy
splitting; 3rd column: spin-orbit interaction within multiplet terms; 4th column:
eigen-energies of the Hamiltonian (HU + HSO). Spin-orbit interaction within mul-
tiplet terms are good approximations for “light” atoms but not for “heavy” atoms.
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we compute the character

λ =
∑

ML,MS

∣∣ 〈L,ML, S,MS | v〉
∣∣2 (6.50)

If |v〉 lives completely in the space spanned by |L,ML, S,MS〉, we shall get λ = 1. On the
contrary, if |v〉 is completely off, we will get λ = 0. However, in our problem, this |v〉 is often
partly in one multiplet term and partly in the others. In this case we get 0 < λ < 1. The closer
to 1, the stronger is the contribution from this specific multiplet term.

Continuing with our discussion, we compute all characters for each numerical eigen-vectors of
(HU + HSO) within the three multiplet spaces 1S, 1D and 3P . The characters are listed in
Table 6.2.

Table 6.2.: Character of numerical eigen-vectors in different multiplet term spaces. We highlight
the main contribution using underlines. Zero values are left as empty entries so that
the structure can be seen clearly.

Elem Orbital Energy within
entire shell

(×degeneracy)

Character
in 1S

Character
in 1D

Character
in 3P

C 2p2 0.612081 (×1) 0.999995 0.000005
0.529403 (×5) 0.999992 0.000008
0.474392 (×5) 0.000008 0.999992
0.474175 (×3) 1.000000
0.474065 (×1) 0.000005 0.999995

Pb 6p2 0.335963 (×1) 0.909208 0.090792
0.284981 (×5) 0.724683 0.275317
0.240833 (×5) 0.275317 0.724683
0.225100 (×3) 1.000000
0.198693 (×1) 0.090792 0.909208

If you watch carefully and compare Table 6.2 with Fig. 6.2, you will notice that the terms are
mixed if they have the same J . Maybe you also noticed the interesting “1.000000” which never
mixes with the others. That is because the vectors are from the term with a unique J .

This table of characters directly indicates how strongly are the eigen-states mixed among dif-
ferent multiplet terms (different angular momenta). It again evidenced that with spin-orbit
effect, the eigen-states in carbon (light atom) are slightly mixed with different multiplet terms,
but the eigen-states in lead (heavy atom) are strongly mixed with different multiplet terms. I
must point out that, the numerical diagonalization of (HU + HSO) can always give us a better
estimation of the eigen-energies (because it uses the complete basis in the open shell), which is
especially important for heavy atoms. Nevertheless, our construction of multiplet states and the
first order perturbation theory in spin-orbit coupling give us a very important understanding of
the problem and a deep insight into the physical system.



Chapter 7

Summary

If your friend asks you, “What is multiplet?” A short answer is, “Multiplets are the many-
electron eigen-states in atoms.” But probably he won’t be satisfied since he knows the name but
doesn’t really understand the problem. Then you give him the following box and two electrons,

1 0 −1
↑
↓ and • •

and ask, “Let’s put these two electrons into this p shell. In which configuration do you think this
system has the highest energy?” (don’t ask for the lowest one, since it can be known easily from
Hund’s rule) If he complains there is no difference in the way of putting electrons, then he is
speaking mean-field language, which is exactly what we assumed in our Chapter 3. Fortunately,
your friend is convinced that electrons with different orbital and spin angular momenta do repel
each other differently (you showed him the plots in Appendix A). But still, he won’t recognize
which configuration has the highest energy, because this is not at all a trivial problem! If you
are also curious for the answer, I put it here directly: the state

1√
3

•
• − 1√

3

•
• +

1√
3

•
•

is an eigen-state of the p2 configuration with the highest eigen-energy, and it corresponds to
the 1S multiplet (you see, nobody could answer this easily). The complete problem is worked
out step by step in Chapter 5. Finally, in addition to Coulomb repulsion, we also included
spin-orbit coupling in Chapter 6, where we see the multiplet spectral lines further split into finer
structures. Our work can be extended by introducing the jj-coupling, where we consider each
electron’s total angular momentum. We can also introduce external crystal field (our present
work are in the frame of isolated atoms) to study how our multiplet states respond to different
external potential fields.

In the very end I must advertise our simulation tool: all the discussions in this thesis have
been implemented on a web page. Programming codes are written in JavaScript. You can run
simulations of all atoms on the periodic table directly in a modern browser (no installation, no
compilation, and no plug-in). This simulation tool can be accessed via the link:

www.cond-mat.de/sims/multiplet

www.cond-mat.de/sims/multiplet




Appendix A

How to draw spherical harmonics

A.1. The spherical harmonics

For the first time students encounter spherical harmonics, we are most likely scared away by the
complicated expressions and bizarre geometries of the plots. Complaining,

“I can never understand these functions and crazy plots. It’s all so complicated!”

This is, however, always the case when we learn something new. Things usually look incompre-
hensible until we understand them and set up a good friendship.

Spherical harmonics are the solutions of the angular equation in (2.3):

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2
= −l(l + 1)Y (A.1)

The derivations are nicely discussed in Griffiths’ book [1]. In this short appendix, we are not
going to repeat the derivations, but will emphasize another interesting perspective: how to
draw the spherical harmonics. Not only for impressing your friends, but more importantly, once
we understood how they are plotted, we will get a direct feeling of spherical harmonics and
essentially comprehend their meanings.

The spherical harmonics Ylm(θ, φ) (with l = 0, 1, . . . and m = −l, . . . , l), are given by

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ (A.2)

The big square root in front is nothing but a normalization factor, simply a real number. The
exponential term in the end is called the phase, which never contributes when we consider
the modulus square |Ylm|2. Probably the most scaring term is Pml , the associated Legendre
polynomials. But don’t worry, they can be computed very easily. The computation routine
is clearly provided by Numerical Recipes [9]. To give a direct impression, Table A.1 explicitly
listed the first few spherical harmonics.
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Table A.1.: The first few spherical harmonics Ylm(θ, φ).

Y0, 0 =

√
1

4π

Y1, 0 =

√
3

4π
cos θ

Y1,±1 = ∓
√

3

8π
sin θ e±iφ

Y2, 0 =

√
5

16π
(3 cos2 θ − 1)

Y2,±1 = ∓
√

15

8π
sin θ cos θ e±iφ

Y2,±2 =

√
15

32π
sin2 θ e±2iφ

Y3, 0 =

√
7

16π
(5 cos3 θ − 3 cos θ)

Y3,±1 = ∓
√

21

64π
sin θ(5 cos2 θ − 1) e±iφ

Y3,±2 =

√
105

32π
sin2 θ cos θ e±2iφ

Y3,±3 = ∓
√

35

64π
sin3 θ e±3iφ

A.2. Plotting in spherical coordinates

Perhaps the most common and easiest way to make a plot is to plot in the Cartesian coordin-
ate system. Just like how we plotted our radial wave functions unl(r). We took the x-axis
representing our spacial distance r and y-axis representing our wave functions unl{

x← r

y ← unl
(A.3)

However, for our angular wave functions, namely the spherical harmonics Ylm(θ, φ), it is more
natural to plot them in a spherical coordinate system, since it is where they are defined. Now
the mapping is the following, 

r ← Ylm

θ ← θ

φ← φ

(A.4)

The important message is that we use the radius to represent the amplitude of spherical har-
monics. The functions listed in Table A.1 are good enough for us to make a couple of beautiful
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plots. For simplicity, we would like to restrict the azimuthal angle φ to 0, that is, we plot in the
xz-plane. So now we have only one variable θ. To make the plots, we first define our grid in θ{

θmin = 0; θmax = 2π; ∆θ =
π

12
;
}

(A.5)

To get started, let’s plot the simplest function Y00,

For θ = 0 , we have r =
√

1
4π ;

For θ = π
12 , we have r =

√
1

4π ;

For θ = 2π
12 , we have r =

√
1

4π ;
. . .

For θ = 2π, we have r =
√

1
4π .

If we plot these data points and connect them, we get a circle! (Fig. A.1)
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Figure A.1.: Y00(θ, φ) in the xz-plane.

Y00 was simple enough. Let’s try a more exciting one, Y10,

For θ = 0 , we have r ≈ 0.4886;
For θ = π

12 , we have r ≈ 0.4720;
. . .
For θ = 7π

12 , we have r ≈ −0.1265 ;
. . .
For θ = 23π

12 , we have r ≈ 0.4720;
For θ = 2π , we have r ≈ 0.4886.

Wait! how do we plot a negative radius? Hum... we really can only plot the absolute value. To
indicate the different signs, let’s use two different colors. We use red color for positive Y10 and
blue color for negative Y10. Now we plot the data points and connect them. We get a red-blue
colored plot in Fig. A.2

The color of the plot doesn’t contribute much into the physical meaning. Never ever misunder-
stand them as positive or negative charges (or whatever). The physical meaning is represented
by the modulus square of the wave function |Ylm|2, which is the probability density of finding
an electron. It doesn’t really matter which color (± sign) it is.
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Figure A.2.: Y10(θ, φ) in the xz-plane.

Previously we restricted our azimuthal angle to 0. It wouldn’t be too difficult to extend our
discussion for arbitrary φ. When we consider a non-zero φ, we may have the situation that Ylm
is a complex number. But we simply plot the modulus of the complex number, so it won’t be
a problem. Nevertheless, if we want to indicate the phase of the complex number (just like for
indicating the ± sign), we can do some color mapping to make a fancy plot. To get an idea how
it works, we take the function Y1,−1 as an example. This time, we restrict our inclination angle
θ to π

2 , that is, we plot in the xy-plane. Now we have freedom in φ.{
φmin = 0; φmax = 2π; ∆φ =

π

12
;
}

(A.6)

For φ = 0 , we have r ≈ 0.3455e 0.0000i;
For φ = π

12 , we have r ≈ 0.3455e−0.2618i;
For φ = 2π

12 , we have r ≈ 0.3455e−0.5236i;
. . .
For φ = 2π, we have r ≈ 0.3455e−6.2832i.

We plot the modulus of the complex numbers as the radius. And we map the colors according to
the phase angles of the complex numbers, which is the angle formed by the real and imaginary
parts on the complex plane. The choice of colors is arbitrary, but it is good to have some
continuously interpolated colors to represent the continuous phase angles. (Fig. A.3)
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Figure A.3.: Y1,−1(θ, φ) in the xy-plane.
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We have basically introduced all the essential ideas for plotting spherical harmonics. All that
remains is to implement (or use) a 3D visualization program to visualize the (r, θ, φ) data.
Writing a 3D visualization program involves some computer graphics knowledge, such as the
coordinate transformations and shading programs. I have implemented a program using the
WebGL technology, which can be run directly in a modern browser. I summarize some nice
plots generated by WebGL in Table A.3, which are the functions listed in Table A.1.

A.3. Linear combinations of spherical harmonics

The spherical harmonics Ylm (called pure harmonics) are solutions from Eqn. (A.1). Con-
sequently, their linear combinations (with the same l) are also valid solutions. Actually, you can
take any crazy combinations to make some crazy plots. But there are a handful of pre-defined
linear combinations, which are typically useful for chemists. Those pre-defined combinations are
called real harmonics. Because those combinations (by combining ±m) eliminate the imaginary
parts and result in functions which are in the real range. The first few real harmonics are listed
in Table A.2. The corresponding plots are also given in Table A.4. You will see only two colors,
because there are only positive and negative real numbers!

Table A.2.: The first few real harmonics.

s = Y0,0

pz = Y1,0

px =

√
1

2
(Y1,−1 − Y1,1)

py =

√
1

2
i(Y1,−1 + Y1,1)

d3z2−1 = Y2,0

dxz =

√
1

2
(Y2,−1 − Y2,1)

dyz =

√
1

2
i(Y2,−1 + Y2,1)

dx2−y2 =

√
1

2
(Y2,−2 + Y2,2)

dxy =

√
1

2
i(Y2,−2 − Y2,2)

fz(5z2−3) = Y3,0

fx(5z2−1) =

√
1

2
(Y3,−1 − Y3,1)

fy(5z2−1) =

√
1

2
i(Y3,−1 + Y3,1)

fz(x2−y2) =

√
1

2
(Y3,−2 + Y3,2)

fxyz =

√
1

2
i(Y3,−2 − Y3,2)

fx(x2−3y2) =

√
1

2
(Y3,−3 − Y3,3)

fy(3x2−y2) =

√
1

2
i(Y3,−3 + Y3,3)
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Appendix B

Second quantization

B.1. A different formalism but the same physics

In real space, electrons are described as wave functions. Because electrons are fermions, their
anti-symmetric wave functions are formulated as Slater determinants [16]. (as a remark, a many-
electron wave function Ψ(r1, . . . , rN ) is in general a linear combination of Slater determinants.
Meanwhile, we are ignoring spin to simplify our notations.)

Φα1···αN (r1, . . . , rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕα1(r1) ϕα2(r1) · · · ϕαN (r1)
ϕα1(r2) ϕα2(r2) · · · ϕαN (r2)

...
...

. . .
...

ϕα1(rN ) ϕα2(rN ) · · · ϕαN (rN )

∣∣∣∣∣∣∣∣∣ (B.1)

For a one-electron wave function, Eqn. (B.1) is trivial:

Φα(r1) = ϕα(r1) (B.2)

For a two-electron wave function, Eqn. (B.1) reads:

Φαβ(r1, r2) =
1√
2

(ϕα(r1)ϕβ(r2)− ϕβ(r1)ϕα(r2)) (B.3)

For a three-electron wave function, Eqn. (B.1) becomes:

Φαβγ(r1, r2, r3) =
1√
6

(
ϕα(r1)ϕβ(r2)ϕγ(r3) + ϕγ(r1)ϕα(r2)ϕβ(r3) + ϕβ(r1)ϕγ(r2)ϕα(r3)

−ϕγ(r1)ϕβ(r2)ϕα(r3)− ϕβ(r1)ϕα(r2)ϕγ(r3)− ϕα(r1)ϕγ(r2)ϕβ(r3)
)

(B.4)

I wouldn’t intend to write the four-electron wave function since it will be super long. This
trouble is actually caused by working with real space. Since we need to label r1, r2, . . . , rN for
different degrees of freedom, we must use the Slater determinant to ensure the anti-symmetry
property of the wave function, which unfortunately makes the expression very complicated. We
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can get rid of this difficulty if not working with real space. To specify an electron in state α,
instead of ϕα(r1), we write

|α〉

which is known as the Dirac state [1]. Now, for a two-electron state, we write

|α, β〉

But how do we ensure the anti-symmetry of this two-electron state?

|α, β〉 = − |β, α〉 (B.5)

Previously, when working with real space, this was ensured by the Slater determinant. Now,
this anti-symmetry will be taken care by the second quantization operators.1

|α, β〉 = c†βc
†
α |0〉 (B.6)

These lovely operators have the property that if they change order, they produce a minus sign
(the fermi-sign).

|α, β〉 = c†βc
†
α |0〉 = −c†αc

†
β |0〉 = − |β, α〉 (B.7)

Surprisingly, the anti-symmetry property is automatically ensured! With second quantization,
many-electron states could be written out with no pain.

For a one-electron state,

|α〉 = c†α |0〉 (B.8)

For a two-electron state,

|α, β〉 = c†βc
†
α |0〉 (B.9)

For a three-electron state,

|α, β, γ〉 = c†γc
†
βc
†
α |0〉 (B.10)

We do not need to worry about the anti-symmetry, because it is taken care by those operators
automatically. This is the idea of second quantization. It must be pointed out, second quantiz-
ation does not involve any new physics. Sometimes this name is misleading that people tend to
ask, “Wait, what was the first quantization? Well, if the quantization of electron was the first,
what is the second one?” No, no! Nothing is further quantized. Second quantization is just a
novel “algebra” that simplifies the formalism of many-body problems.

Suppose we have a state

|example〉 =
1√
6

(
c†αc
†
βc
†
γ + 2c†δc

†
εc
†
ζ + c†ηc

†
θc
†
ι

)
|0〉 (B.11)

which is a linear combination of three different Slater determinants. It would be horrible to
express it in real space (repeat Eqn. (B.4) three times). Second quantization provides us a very
convenient way to handle many-body states.

1The order of the operators indicates we create α first and β second. Hence we write c†βc
†
α |0〉 = |α, β〉.
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B.2. Creation and annihilation operators

We start from the vacuum state |0〉, which is a state with no electron. Although without electron,

it is defined to be normalized 〈0 | 0〉 = 1. Next, we introduce the creation operator c†α. If c†α
applies on a vacuum state, it creates one electron with state α,

c†α |0〉 = |α〉 (B.12)

“Hum? Create an electron out of vacuum?” No, no! We are not going to set up a lab to create
electrons out of photons or whatever. This is purely an algebra. By saying “create”, it is from
a mathematics point of view, not a physical process. Similarly, we have an electron annihilation
operator cα. If cα applies on a vacuum state, it returns zero

cα |0〉 = 0 (B.13)

Previously, we claimed that the creation operators anti-commute: c†αc
†
β = −c†βc

†
α. This is one of

the definitions in second quantization. Now, the commutation relation between a creator and
an annihilator is defined as

cαc
†
β = 〈α |β〉 − c†βcα (B.14)

When working with orthonormal basis states, 〈α |β〉 = δαβ. Let’s see what happens if cα applies
on a state |α〉

cα |α〉 = cαc
†
α |0〉 = (1− c†αcα) |0〉 = |0〉 − c†α cα |0〉︸ ︷︷ ︸

=0

= |0〉 (B.15)

As the name suggests, it removes one electron from |α〉 and brings back the vacuum state.
But this is purely an algebraic consequence, not a definition. The entire definition of second
quantization algebra are summarized in Table B.1.

Table B.1.: The definition of second quantization algebra.

〈0 | 0〉 = 1

cα |0〉 = 0

{c†α, c
†
β} = 0

{cα, cβ} = 0

{cα, c†β} = 〈α |β〉

where the anti-commutator,

{A,B} ≡ AB +BA (B.16)

Believe it or not, with simply five definitions, Table B.1 defines the complete system which
formulates second quantization.



88 Second quantization

B.3. The bridge between first and second quantization

A two-electron Slater determinant in first quantization (real space),

1√
2

(ϕα(r1)ϕβ(r2)− ϕβ(r1)ϕα(r2))

A two-electron Slater determinant in second quantization (configuration space),

c†βc
†
α |0〉

However, these two are not the same:

c†βc
†
α |0〉 6=

1√
2

(ϕα(r1)ϕβ(r2)− ϕβ(r1)ϕα(r2)) (B.17)

A wave function is a wave function and a state is a state. They describe the same Slater
determinant, but one cannot put an equal sign in between. To make the connection between
real space and second quantization, we need some special electron creators and annihilators
(called field operators). Although physically not possible, algebraically we can “create” an

electron in such a state that it is exactly at position r. We denote c†r |0〉 = |r〉.2 Suppose we
have an |α〉 state which in real space corresponds to wave function ϕα(r). Considering ϕα(r) as

an amplitude, c†α and c†r are (intuitively) related as

c†α =

∫
d3r ϕα(r)c†r (B.18)

Conversely, if we have a complete(!) set of single electron wave functions ϕαn(r), we can expand
the field operators in terms of the corresponding creators and annihilators

c†r =
∑
n

ϕαn(r)c†αn (B.19)

Using Eqn. (B.18), we find the anti-commutation relation

{cr, c†α} =

∫
d3r′ ϕα(r′){cr, c†r′} = ϕα(r) (B.20)

which is such a golden relation that helps us bridge second quantization to real space. For
example, a one-electron Slater determinant,

〈r1 |α〉 = 〈0| cr1c
†
α |0〉 = 〈0|ϕα(r1)− c†αcr1 |0〉 = ϕα(r1) (B.21)

Nice! We get back our wave function in real space. Next, for a two-electron Slater determinant,

〈r2, r1 |α, β〉 = 〈0| cr1cr2c
†
βc
†
α |0〉

= 〈0| cr1(ϕβ(r2)− c†βcr2)c†α |0〉

= 〈0| cr1c
†
α |0〉ϕβ(r2)− 〈0| cr1c

†
βcr2c

†
α |0〉

= ϕα(r1)ϕβ(r2)− ϕβ(r1)ϕα(r2) (B.22)

2Because of the importance of these special creators and annihilators, they get a name, field operators. A more
standard way to write field operators are Ψ̂(r) and Ψ̂†(r) (see Reference [16]). But I would like to stick with cr
and c†r to simplify our notations.
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Impressive! Even the two-electron anti-symmetric wave function is automatically returned. A
proof by induction is nicely discussed in Reference [16]. Here we quote the conclusion, for an
N -electron state, its real-space Slater determinant representation is given by

Φα1···αN (r1, . . . , rN ) =
1√
N !
〈0| cr1cr2 · · · crN c

†
αN
· · · c†α2

c†α1
|0〉 (B.23)

From our quantum mechanics lectures, we often see the relation,

〈α |β〉 =

∫
d3r ϕα(r)ϕβ(r) (B.24)

This can also be shown using our field operators:

〈α |β〉 = 〈0| cαc†β |0〉 = 〈0|
∫
d3r ϕα(r)crϕβ(r)c†r |0〉

=

∫
d3r ϕα(r)ϕβ(r) 〈0| crc†r |0〉︸ ︷︷ ︸

=1

=

∫
d3r ϕα(r)ϕβ(r) (B.25)

Similarly, for the two electron case,

〈α, β | γ, δ〉 = 〈0| cβcαc†δc
†
γ |0〉 = 〈0| cαcβc†γc

†
δ |0〉

= 〈0|
∫
d3r1 ϕα(r1)cr1ϕδ(r1)c†r1

∫
d3r2 ϕβ(r2)cr2ϕγ(r2)c†r2

|0〉

=

∫
d3r1

∫
d3r2 ϕα(r1)ϕβ(r2)ϕγ(r2)ϕδ(r1) 〈0| cr1c

†
r1
cr2c

†
r2
|0〉︸ ︷︷ ︸

=1

(B.26)

Those lovely operators cr and c†r play a role bridging first and second quantization. But they
never appear explicitly in either first or second quantization!

B.4. Representation of n-body operators

In Chapter 4, we were working with the Coulomb repulsion Hamiltonian,

HU =
N∑
i<j

1

|ri − rj |
(B.27)

which is a two-body operator.

In Chapter 6, we introduced the spin-orbit coupling Hamiltonian,

HSO =
N∑
i=1

ξ(ri)`i · si (B.28)

which is a one-body operator.

Eqn. (B.27) and Eqn. (B.28) are in the form of the so called first quantization. They operate on
real-space wave functions. A second quantization many-body state is, however, not compatible
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with those operators. A beautiful discussion (you must give a look) of transforming real-space
operators to second quantization operators is given in [16]. A key idea is to use the “bridge” in
Eqn. (B.23). To avoid repeating the same content, I write down the results directly:

For the Coulomb repulsion Hamiltonian,

HU =
1

2

∑
α,β,γ,δ

〈α, β| 1

|r1 − r2|
|γ, δ〉 c†αc

†
βcγcδ (B.29)

which is given in Eqn. (4.2).

For the spin-orbit coupling Hamiltonian,

HSO =
∑
α,β

〈α| ξ(r)` · s |β〉 c†αcβ (B.30)

which is given in Eqn. (6.44).

They are the Hamiltonians compatible with second quantization states.

B.5. Electron-hole transformation

In this section, we would like to restrict our discussion on atomic shell basis states instead of
general states. In Eqn. (5.17), we made a convention that for a fully occupied shell, the electron
creators are arranged in the following way:

1 0 −1
↑ • • •
↓ • • • = c†−1↓c

†
0↓c
†
1↓c
†
−1↑c

†
0↑c
†
1↑ |0〉 (B.31)

Now we understand why it is important to make such a convention: the convention is arbitrary,
but once it is decided, it must remain unchanged through the entire discussion, since changing
the order of electron creators involves fermi-signs (±1).

To motivate the topic of this section, let’s consider an almost-full shell, say, a d8:

2 1 0 −1 −2
↑ • • • •
↓ • • • •

We would write it in terms of electron creation operators as

c†−2↓c
†
−1↓c

†
1↓c
†
2↓c
†
−1↑c

†
0↑c
†
1↑c
†
2↑ |0〉

This becomes a bit cumbersome and not very readable (but of course much simpler than its
real-space form). We noticed that if we express the same state in terms of the unoccupied sites,
the expression will become much shorter. What we need to do is to transform our “electron
algebra” into a “hole algebra”. Let’s start from the fully occupied d shell

|full〉 = c†−2↓c
†
−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑ |0〉 (B.32)

Notice that a |full〉 state also has ML = 0 and MS = 0. From the hole’s point of view, the |full〉
state behaves like a “vacuum” state. Creating a hole at site (−m,−σ) on a |full〉 state leaves
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the system with momentum ML = m and MS = σ. Hence we could define our hole creation
operator as

h†mσ = c−m,−σ (B.33)

But this is not very convenient. Because what we really want is, for example,

• • • •
• • • • • = h†2↓ |full〉 (B.34)

However,

• • • •
• • • • • = c†−2↓c

†
−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−1↑c

†
0↑c
†
1↑c
†
2↑ |0〉

= c†−2↓c
†
−1↓c

†
0↓c
†
1↓c
†
2↓ c−2↑ c

†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑ |0〉

= (−1)5 c−2↑ c
†
−2↓c

†
−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑ |0〉︸ ︷︷ ︸

|full〉

= −c−2↑ |full〉 = −h†2↓ |full〉 (B.35)

If we really want to write as the way in Eqn. (B.34), we must absorb the fermi-sign into definition
(B.33). According to our full shell definition, this fermi-sign has the following pattern

−
+

− + −
+ − +

− + − + −
+ − + − +

− + − + − + −
+ − + − + − +

Therefore, we define, (the definition is subject to how a |full〉 is defined)

h†mσ = (−1)l+m+σ− 1
2 c−m,−σ (B.36)

The next question is how to arrange these hole operators. Previously we made a convention
of ordering electron creators. Now we no longer have this freedom to define new convention of
ordering hole creators. As a consequence from previous convention, the hole creators should be
ordered in the following way: (notice that it is the same order of putting electrons)

1 0 −1
↑
↓ = h†1↑h

†
0↑h
†
−1↑h

†
1↓h
†
0↓h
†
−1↓ |full〉 (B.37)

In general, an N -electron basis vector and a (2(2l− 1)−N)-hole basis vector are equivalent by
the relation,

N∏
i=1

c†miσi |0〉 =

2(2l−1)−N∏
j=1

h†mjσj |full〉

The indices {j} run over the complement part of indices {i}, for example,

i1 i2 i3 i4 j1
i5 i6 j2 i7 i8

(B.38)

To show their equivalence,

2(2l−1)−N∏
j=1

h†mjσj |full〉 =

2(2l−1)−N∏
j=1

(−1)l+mj+σj−
1
2 c−mj ,−σj

2(2l+1)∏
i=1

c†miσi |0〉 (B.39)
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But anti-commuting c−mj ,−σj into the full shell always cancels the (−1)l+mj+σj−
1
2 factor (that

is how this factor is designed for). After all anti-commutations, what left is,

2(2l−1)−N∏
j=1

h†mjσj |full〉 =

N∏
i=1

c†miσi |0〉 (B.40)

We can verify that our example state

• • • •
• • • • = h†0↑h

†
2↓ |full〉 = −c0↓c−2↑ |full〉

= −c0↓ c−2↑ c
†
−2↓c

†
−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑ |0〉

= (−1)6c0↓c
†
−2↓c

†
−1↓c

†
0↓c
†
1↓c
†
2↓ c−2↑ c

†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑ |0〉

= (−1)6 c0↓ c
†
−2↓c

†
−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−1↑c

†
0↑c
†
1↑c
†
2↑ |0〉

= (−1)8c†−2↓c
†
−1↓ c0↓ c

†
0↓c
†
1↓c
†
2↓c
†
−1↑c

†
0↑c
†
1↑c
†
2↑ |0〉

= c†−2↓c
†
−1↓c

†
1↓c
†
2↓c
†
−1↑c

†
0↑c
†
1↑c
†
2↑ |0〉 (B.41)

is indeed equivalent to the expression in terms of electron creators.

Eqn. (B.36) is essentially the portal connecting the electron world with the hole world. With
this definition, we can investigate the properties of hole operators. First of all, the |full〉 state
is normalized, 〈full | full〉 = 1. If we apply a hole annihilation operator on it, according to Pauli
exclusion principle, hmσ |full〉 = 0. Now, we test the anti-commutation relation between hole
operators.

{h†m1σ1
, h†m2σ2

} = (−1)2l+m1+m2+σ1+σ2−1{c−m1,−σ1 , c−m2,−σ2} = 0 (B.42)

{hm1σ1 , hm2σ2} = (−1)2l+m1+m2+σ1+σ2−1{c†−m1,−σ1
, c†−m2,−σ2

} = 0 (B.43)

{hm1σ1 , h
†
m2σ2
} = (−1)2l+m1+m2+σ1+σ2−1{c†−m1,−σ1

, c−m2,−σ2}
= (−1)2l+m1+m2+σ1+σ2−1δm1m2δσ1σ2 = δm1m2δσ1σ2 (B.44)

It turns out (not by definition), our hole operators behave exactly as electron operators.

Table B.2.: Second quantization algebra from the hole’s perspective.

〈full | full〉 = 1

hmσ |full〉 = 0

{h†m1σ1
, h†m2σ2

} = 0

{hm1σ1 , hm2σ2} = 0

{hm1σ1 , h
†
m2σ2
} = δm1m2δσ1σ2
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