000188338 001__ 188338
000188338 005__ 20240708132903.0
000188338 037__ $$aFZJ-2015-01746
000188338 041__ $$aEnglish
000188338 1001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b0$$eCorresponding Author$$ufzj
000188338 1112_ $$aThe 28th International Conference on Surface Modification Technologies$$cTampere$$d2014-06-16 - 2014-06-18$$gSMT28$$wFinland
000188338 245__ $$aApplication of Optical Emission Spectroscopy for Diagnostics of SPS and PS-PVD
000188338 260__ $$c2015
000188338 300__ $$a673 - 683
000188338 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1425565270_9347
000188338 3367_ $$033$$2EndNote$$aConference Paper
000188338 3367_ $$2ORCID$$aCONFERENCE_PAPER
000188338 3367_ $$2DataCite$$aOutput Types/Conference Paper
000188338 3367_ $$2DRIVER$$aconferenceObject
000188338 3367_ $$2BibTeX$$aINPROCEEDINGS
000188338 520__ $$aEmerging new applications and growing demands of plasma sprayed coatings have initiated the development of new plasma spray processes. One of them is plasma spraying-physical vapor deposition (PS-PVD) filling the gap between conventional liquid splat deposition and vapor deposition methods like electron beam-physical vapor deposition (EB-PVD). A second novel process is suspension plasma spraying (SPS) enabling the processing of submicron-sized feedstock by injecting suspensions into the plasma jet. Both of these processes allow obtaining particular microstructures which are not available by conventional atmospheric plasma spraying (APS). They can be very thin and dense layers as well as segmented or columnar structured highly porous coatings.To exploit these potentials, the plasma characteristics and the plasma-feedstock interaction must be understood better. Hence, plasma conditions at PS-PVD and SPS were studied by optical emission spectroscopy (OES). Decomposition and evaporation of feedstock material were investigated as well, since particular difficulties can occur with respect to stoichiometry and phase composition of the deposits. Some experimental examples are given to demonstrate the applicability of OES.
000188338 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000188338 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b1$$ufzj
000188338 909CO $$ooai:juser.fz-juelich.de:188338$$pVDB
000188338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188338 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000188338 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000188338 9141_ $$y2015
000188338 920__ $$lyes
000188338 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000188338 980__ $$acontrib
000188338 980__ $$aVDB
000188338 980__ $$aI:(DE-Juel1)IEK-1-20101013
000188338 980__ $$aUNRESTRICTED
000188338 981__ $$aI:(DE-Juel1)IMD-2-20101013