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In this chapter we will review the standard ways to perform stochastic simulations on soft matter
without memory. In order to make these methods available for very concentrated complex
polymeric soft matter in which the particles experience large frictions we will extend these
models to include memory and hydrodynamics at the Brownian level. This allows us to study
flow instabilities and even flow in complex geometries.

1 Introduction

It is our intention in this paper to describe a model for simulating complex soft matter
systems, possibly flowing through complex geometries, and possibly undergoing phase
transitions or flow instabilities. This requires that the model faithfully represents all ther-
modynamic and all rheological properties of the system. The simplest way to do this
would be to perform a full glory particle based simulation, if not this would be impossible
because of prohibitively large computational costs (just to make an understatement). Yet
this is more or less what we want to do, although we will have to remove the adjective ’full
glory’.

Complex soft matter systems usually consist of very large particles with many internal
degrees of freedom, dissolved in an appropriate solvent or in the molten state. The proto-
typical example of a particle is a star polymer of hundreds of kilo-Daltons. We will develop
a severely coarse grained simulation model for such a system, in which each molecule is
represented by just its center of mass position. This requires special tricks of course, as
can be understood from a glance at Fig. (1). In the left panel of this figure we have de-
picted an artist’s impression of a star polymer solution. Each polymer consists of many
arms connected to a central point. The concentration is such that the arms of each polymer
are highly entangled with many of their neighbors. One of the characteristics of polymers
as opposed to normal molecules is that they interact with hundreds of neighbors, not just
something between ten and twenty as in dense liquids or solutions of normal molecules.
Now, the act/art of coarse graining is to remove all explicit reference to the internal degrees
of freedom of each molecule and the degrees of freedom of the solvent. Once we have done
this, our system looks geometrically like the right hand panel of Fig. (1). This looks very
much like an ideal gas, yet we have to make the particles move like the centers of mass do
in the the left hand panel.

We will gradually build the theory underlying the model that we need. We start by
reviewing the theory behind the Langevin equation that describes the motion of colloidal



Figure 1. Definition of coarse graining. In the left panel a complex soft matter system is depicted, consisting of
star polymers dissolved in a solvent. Each star consists of many arms connected to a central point, while each
arm is a polymer of many kilo Daltons of mass. The concentration is such that each star interacts with many,
usually hundreds, of neighboring fellows. In the right panel we have depicted what the system looks like when
only centers of mass are seen. This is what is simulated by our coarse model. The dynamics of the points in the
right panel must be equal to that of the centers of mass in the left panel.

particles in a solvent. Next we discuss changes to be made in order to make the model
applicable to our aimed for systems. In section 4 we notice that momenta usually play
no role in soft matter systems and that it is better to dispense with them altogether. The
result of this section will be the final model that we apply in our simulations. It describes
displacements of the particles with respect to a background flow which drags them along.
Our algorithm includes updates to calculate the time evolution of the background flow.
Interactions between particles will be such that they give rise to correct thermodynamical
behavior of the system. A reasonably small set of structural variables is introduced to
describe memory effects that result from the fact that every configuration of the coarse
degrees of freedom on the small scale may be accompanied by one of many configurations
of the eliminated degrees of freedom. These variables describe how the eliminated dgrees
of freedom would have responded to the changing coarse configurations. The method
therefore carries the name of Resposive Particle Dynamics (RaPiD). It is important that the
additional structural variables do not influence the thermodynamics of the system. Finally
in section 5 we describe one example that has been simulated using this method.

2 The Langevin Equation

Our discussion in this section will be very much along the lines of McQuarrie’s textbook
on Statistical Physics'. The prototypical example of a system to which stochastic differen-
tial equations are applied is the infinitely diluted suspension of colloids in an appropriate
solvent. In this case each colloidal particle can be assumed to move independently of all
other particles, while only being influenced by the surrounding solvent molecules. In the
usual explanation of the action of the solvent molecules on the colloid it is assumed, that
while the colloid moves through the liquid, it experiences more collisions with the solvent
molecules in the front than in its back. This gives rise, on average, to a force opposite
to the direction of its motion and proportional to the absolute value of its velocity. The
deviation of the instantaneous force from this average force is then a quickly fluctuating
contribution, which on average equals zero. The corresponding equation of motion for the



colloid is called the Langevin equation and reads

dv
— = From. 1
m &v+ (1)
Here v denotes the velocity of the particle and m its mass; & is called the friction coefficient
and F"" the random force. Notice that the dimensions of £ are kg/s. Below we will prove

that the random forces are related to the friction coefficient according to
< F(t)F™"™(0) >= 2¢kpTo(¢t)1. 2)

The latter equation is called the Fluctuation-Dissipation theorem.
The left hand side of Eq. (2) should be read like

< EZOn(H)F1o™(0) > < FLon()F7om(0) > < Fron(t)F7*™(0) >
< Fyem () Fpem(0) > < Fen(t) Fyem(0) > < Fyen(t) F7e(0) > (3)
< FIo(t)Frem(0) > < FIo™(t)Fren(0) > < FIn(t)F1"(0) >

Pointy brackets in general indicate an equilibrium average. When we average the product
of two variables taken at different times, the interpretation is a bit more involved. In the
present case, < F.%"(t) Fg em(0) > is called the time correlation function of the random
forces in « and 3 direction. It is the average value of F2*"(t) at time ¢ over all realizations
which had FZ*"(0) at time ¢ = 0, multiplied by F5*"(0) and next averaged over all
possible realizations. A realization is just a time sequence of positions of the colloidal
particle under investigation. A practical way to calculate < F;“"(t)Fg“”(O) > from a
realization of length 7' is

T—t

< FI™ () F5™(0) >= ——
e OFE0) >= e |

drF*" (1 + ) F5" () ()]
1 is the 3 x 3 unit matrix. Moreover, 6(¢) is the Dirac delta, which may be thought of as
an infinitely narrow function centered at £ = 0 and whose integral is equal to unity. For its
numerical treatment see the section on Brownian Dynamics.

Next consider a dense system of N colloids which interact via a potential ®(r3Y),
where 3V = {ry,ry,...,rx}. A conservative force

F,=-V;® ®)

then acts on particle <. We assume that the Langevin equation for particle ¢ may be obtained
by adding a subscript ¢ to all quantities and by adding —V;® in the right hand side of Eq.
(1). Besides this we assume that the frictions and random forces are not influenced by these
extensions. The final equations then read:

dV,’
i— = —V;® = &§v; + Fj°7,
mi—- = —Vi® —&vi + (6)
< F:an(t)F;an(O) >= 2flkBT5(t)5”1 (7)

Here we have assumed that random forces acting on different particles are uncorrelated,
which is reflected in the Kronecker delta 6;; in the right hand side of the Fluctuation-
Dissipation theorem, which equals unity when ¢ = j and zero otherwise.

Let me finally notice that we have ignored the possibility that moving one particle has
an influence on other particles via the flow field induced in the solvent. The corresponding



interactions are called hydrodynamic interactions. They are indeed relevant for colloidal
suspensions in Newtonian fluids, but play a minor role in the applications of stochastic
methods presented in his chapter.

2.1 Fluctuation Dissipation theorem

In this section we restrict ourselves again to particles moving independently from each
other in absence of any external fields. It will be assumed that friction forces and corre-
sponding random forces, resulting from interactions with the solvent, are independent of
possible interactions between the particles. Only in the case of hydrodynamic interactions
a more general treatment is needed.

In order to prove the Fluctuation-Dissipation theorem we notice that

I ,
V(t) — V(O)e—gt/m + E/ dt/e—g(t—t )/mFran(t/) ®)
0

solves the Langevin equation for the initial velocity v(0). We next invoke the equipartition
theorem of statistical physics, which says that, in equilibrium, velocities along different
Cartesian axes are uncorrelated, i.e. that < v, (t)vg(t) >=< vo(t) >< vg(t) >= 0in
case a # (3, while < v, (t)va(t) >= kgT/m. In order to make the particle forget its
initial velocity and to reach equilibrium, we must take the limit of ¢ — oo in the above
solution. The equipartition theorem then says

. kT
Inserting Eq. (8) we obtain
n —&2t—t' —t")/m ran ran (! kpT
lim — dt dt < F" " (Fron(t) >= ——1. (10)
t—oco M2 m

Next we make use of < F“m(t YET (") >=< Fron(¢” — t')F"**(0) > and change
integration variables to 7/ = " 4+ t' and 7" = t" — ¢, obtaining

2t
kT
1, —&2t—7")/m ran (I ran _ B
tlgglo 72m2/ dT/ dr'e < Fren(r")Fr"(0) >= - 1. (11)
Performing the integral over 7’ we obtain

t

/ dr”" < FT(r"F " (0) >= 2¢kpT1. (12)
—t

If we next assume that the time-correlation functions of the random forces are very short
lived, expressed as < FJo"(t)F7*"(0) >= C¢(t), and perform the final integral, we
obtain the Fluctuation-Dissipation theorem.

2.2 Einstein equation

We now integrate the equations of motion once more in order to obtain displacements. Also
in this subsection we ignore effects of interactions and external fields on the displacements
of the particles and concentrate on the contributions from the solvent.



Integrating Eq. (8) we obtain

r@%@zm%( e=tt/m) m/ﬁ/dwﬂH”wmwyaa

By interchanging integrations we simplify the second term in the right hand side, obtaining

]. "
/dt”/ dt'e—E' =t /mFran(t/I) E/ dt”(l oS-t )/m)FTan(t”). (14)
m

Using the Fluctuation-Dissipation theorem it is now a simple task to calculate

< Ar(t)Ar(t) > = ng(l — e S/™)2y(0)v(0)

kT
+ ‘%(% - % + 4%63—@/’” - %e—%t/m)l, (15)

where Ar(t) = r(t) — r(0). Usually we are interested in equilibrium situations, where we
may average the first term over the Maxwell distribution, obtaining < v(0)v(0) >= #2811
and

k B T m

< Ar(H)Ar(t) >= %?{f€+%(WML (16)

For times ¢ much larger than % we may neglect the last two terms. We then calculate the
mean square displacement by taking the trace

< Ar(t) - Ar(t) >=Tr < Ar(t)Ar(t) >= 6Dt, 17
where
kT
D=—. 18
¢ (18)

D is called diffusion coefficient and Eq. (18) the Einstein relation.

3 Application to complex soft matter

In this section we will address the various terms in the Langevin equation from the per-
spective of its application to complex, visco-elastic soft matter systems. The prototypical
system to have in mind is that of a melt or concentrated solution of highly branched poly-
mers. Our intention is to reduce the degrees of freedom of each polymer to include only
its three positional degrees of freedom. This means that all solvent molecules and all inter-
nal degrees of freedom of the polymers are eliminated from our description and can only
influence the dynamics of the polymers via the three terms in the right hand side of the
Langevin equation. For more information, see Briels?> and van den Noort et. al.>.



3.1 Potential of mean force

The main difference between simple molecular fluids and polymer systems is that simple
molecules are rather compact objects packed in a liquid such that they interact with about
ten to twenty neighboring fellow molecules, while polymers are large open structures in-
teracting with hundreds of other polymers. As a result the usual assumption of pair wise
additive interactions will not be applicable to the case of highly coarse grained polymer
solutions or melts.

In order to get a better understanding of the interactions in polymer systems, notice that
—V,;® is the average force on coarse particle 7 in case all velocities are equal to zero, i.e.
for a fixed configuration 73" = {ry,rs,...,r 5 }. Denoting the potential energy of the fully
detailed microscopic system as V (13, qM ), where g™ denotes all the eliminated degrees
of freedom, the average force on particle ¢ reads

qulwv V( 3N M) eXp{—ﬁV(rSN,qM)}
J dg™ exp{ BV (r3N, ¢M)}

Here we have assumed that dg™ includes possible Jacobians necessary to provide the
correct volume element. Comparison of this expression and F; = —V;® leads to

d(r*N) = —kpTIn / dg™ exp{—pV (3N, ¢*)}. (20)

F, = —

19)

This says that ®(r3/) is the free energy of the eliminated degrees of freedom, i.e. the ¢
in the presence of the field provided by the retained coordinates ", Now with ® being a
free energy we write

() = a(n;(r*Y)), @1)

i=1
where a(n; (r3N )) is the free energy per polymer in a system with polymer volume fraction
equal to the local volume fraction 7;(r3"), with the contribution of the center of mass

excluded. The local volume fraction may be defined as

pma:r .

ni(r*Y) = > w(ryy), (22)
Jj=1

where ppq. is the maximum polymer (number) density and w(r) some normalized,
monotonously decaying weight function with a range on the order of two or three times
the radius of gyration of the polymers; the normalization is such that | d3rw(r) = 1.

A popular expression for the free energy per polymer (excluding the contribution of its
center of mass) derives from the Flory-Huggins free energy”.

3.2 Memory

One of the characteristics of complex polymer solutions or melts is their visco-elasticity.
In order to include the effects of visco-elasticity, the Langevin equation may be generalized
to read

d V. /dtvl Lt — N () 4 O, 23)



< F[" (0)F}"(0) >= kpT¢;(t;r*N (0))ds. 24)

Here (; is a 3 x 3 matrix which is multiplied into the vector v;. Besides this, we have
assumed that the total friction force on particle ¢ depends on its velocity at all times
t' prior to ¢ and that the corresponding friction tensor ¢; depends on the configuration
r3V time /. The generalized friction is said to include *'memory’. We will not prove the
Fluctuation-Dissipation theorem as given in Eq. (24). Notice however, that if we assume
Ci(t;m3N(0)) = 2£,6(t)1 we get back Egs (6) and (7). Note also that, again, we neglect
hydrodynamic interactions.

Let us now try to understand Eq. (23). Within the present context it is useful to rewrite
the memory term to read

- /t dri(t') - Ci(t — ;3N (). (25)
0

This equation reveals the possibility of an entirely different interpretation of the friction
term than the one used at the beginning of this chapter to motivate the original Langevin
equation Eq. (1). It says that if we displace a particle by dr;(¢'), at all times ¢ after
t’ the particle will experience a force opposing the displacement and being linear in its
components. The strength of the force will gradually fade away with increasing time lapse
t —t’ after the displacement. The total force at time ¢ is simply the sum of all contributions
from displacements in the past.

From a computational point of view Eqs (23) and (24) constitute a very complicated set
of equations. Not only do we need to keep track of a usually long history of configurations
in order to calculate the friction tensor, but also do we have to sample random forces from
complicated coupled distributions to guarantee that the Fluctuation-Dissipation condition
Eq. (24) is met. We would rather prefer to deal with the so called Markovian situation
where the friction depends only on the instantaneous configuration. Let us therefore inves-
tigate a bit closer the meaning of the friction term.

To simplify our considerations we concentrate on one particular displacement dr;(t").
As aresult of this displacement the environment of the particle, in a more detailed treatment
described by the eliminated degrees of freedom ¢!, will be slightly perturbed to a non-
equilibrium configuration. This leads to a force that is slightly different from the average
force —V,;® that goes with the new configuration. The difference is what is described by
—dr;(t') - Ci(t — ;73N (¢')). With increasing time ¢ it gradually fades away because the
eliminated degrees of freedom relax to their new equilibrium state. So, friction in a visco-
elastic material basically results from non-equilibrium of the eliminated coordinates.

The above strongly suggests that we restore the slowly evolving part of the friction
force, i.e. its memory part, back into the conservative force that derives from the free
energy ®. The fast evolving part of the friction force may then be included as a Markovian
friction force. To this end we introduce structural parameters N = {1, A2, ..., Am },
which together describe the thermodynamic state of the eliminated degrees of freedom. At
equilibrium they take values A7, (r3Y) = {A77(r3N), A7 (r3N), . G2 (3N )}, We next
assume that the conservative potential ® may be replaced by A(r3N A™) = &(r3N) +
Ot (3N A™) with

1 m
(N, A) = 2 ) aa(hs = AZ(Y))?. (26)
s=1



We assume that the s have no dimensions, which implies that the s have dimensions of
energy. ®! is called the transient potential, and the corresponding forces —V; ! are called
transient forces. For brevity of notation we define

AN ) = (r*N) 4+ (r3V, ™) @7

and call it (total) free energy.

3.3 Flow

An obvious short-coming of the Langevin equation presented so far is the fact that the
possibility of a moving background is not accounted for. Obviously the friction felt by
a particle results not from its absolute motion, but from its velocity with respect to the
velocity of the background, i.e. the average local velocity of the eliminated degrees of
freedom. This can easily be incorporated into the Langevin equation by replacing —¢;v;
by —&[vi — V(r;)], so
dvi ran

This addition makes it necessary to have a model to estimate the local background velocity
V(r;) at the position of the particle r;. We will present a possible way to do this in the
section on Brownian Dynamics.

It is appropriate at this point to mention a different way to deal with flowing systems.
This is done in Dissipative Particle Dynamics (DPD) by introducing pairwise frictions,
which automatically conserve momenta and give rise to a Galilei invariant algorithm®. We
will not discuss this method here, as it cannot be easily adapted to the case of overdamped
systems, i.e. systems with very large friction forces.

4 Brownian Dynamics

In many applications of stochastic simulations to soft matter the friction coefficient &; is
very large, which we call the overdamped case. In these cases the time step becomes lim-
ited, not by the rapidity with which the conservative forces change, but by the contributions
of the random forces which become very large.

This can be seen from a naive integration of the Langevin equation:

2kpT¢;
midvi = —ViAdt — Vifidt + Zt £ @1dt (29)

Here ©); is a random vector characterised by < ©, o, >= 0 and
< ®i,a®i7ﬂ >= 504[3- 30)

Notice that with the last term in Eq. (29) we have represented the random force F} " by
\/2kpT¢;/dt®;. Obviously this equals zero on average, while

_ 2kgT¢;
o dt

Indeed, when dealing with discretized time, 6(t) = 1/dt, so the last equation agrees with
the Fluctuation-Dissipation theorem. Now, looking at Eq. (29) we notice that &; and dt

< FoF > dag- 31)



always appear in the combination &;dt. In particular in the random term this may be very
annoying because it forces us to use small time steps in order to prevent large velocity
changes, which lead to large displacements and finally to wildly fluctuating conservative
forces. These problems may be circumvented by eliminating velocities altogether from the
description. This we will do in the next subsection. Of course, if we are interested in flow,
we will have to come up with a method to measure flow velocities. This we will do in the
third subsection of this section.

4.1 Brownian propagator

This section is essentially a simplified version of a paper by Ermak and McCammon®.

Suppose we are treating a system with very large friction. Characteristic for such systems
is that, time intervals At exist such that, independent of the velocity at the beginning of
the interval, the particle mostly samples velocities from a Maxwell distribution, while at
the same time it hardly displaces. By the latter we mean that displacements during time
At are such that the potential hardly changes. We may therefore choose time intervals At
such that

1 [irat dv; 1
E/ dt’miw = E[mivi(t + At) — m;vi(t)] (32)
t
is arbitrarily small, while at the same time
1 t+At
=~ /t dt'V; AN (1) = VAN (1)), (33)

Let us have a closer look at the meaning of the approximation in the last equation.
Taylor-expanding V A(r3N (¢')) we find that the first term that is neglected in Eq. (33)
is
1 [t+At
SVVACT®) 5 [ d ) - n) (34)
, t

J

Since we are considering the overdamped case, the dominant contribution to |r; (') —r; (t)|
is proportional to (t' — ¢)/2, all other contributions being proportional to (¢’ — ¢)" with
n > 1. After integration over ¢’ and division by At this is proportional to v/At. All other
contributions are proportional to larger powers of A¢. Our approximation therefore implies
that we neglect all terms proportional to any power of At larger than zero.

Summarizing our results so far, we have

1 t+At 1 t+At
=_V. A - — e (v (+ il IEran (4
0 Vi At /t dt gz (t )Vz (t ) + Al /t dt i (t ) (35)

Treating the last two terms similarly to the gradient term, we must evaluate them up to
zeroth order in At. We start with

t+At t+At N
n) e =g [ )+ DT (1)~ D)

(36)



Performing the integration in the first term and rewriting the second, we obtain

t+At
Arl z + Z \ 61 ! / dt/(l‘j (t/) —ry (t))V,L (t/)7 (37)
t

where Ar;(t) =r;(t + At) —r;(t). Contributions from potential forces to the integral are
at least proportional to (At)?2, so we can restrict attention to contributions from random
terms. These are uncorrelated among different particles, so only terms with ¢ = j will
contribute. We rewrite the argument of the remaining integral to get

r t+At
%it)&() Vi&i(t) - QL/ dt'%[(ri(t')fri(t))(ri(t’)—r,;(t))], (38)

where only random displacements should be taken into account. Performing the integral
and averaging over all possible realizations, we get

kgT
Vii(t) - 5ag < @ilt+ A —ri(0)(ri(t + A1) —xi(8)) >= g Vi&i(t),  (39)
where we have used Eq. (16).
Collecting terms so far we have
0=-V;A—- Arif- kBTV &+ ! /t+At dt'F7" (1) (40)
- At g AL ‘

Now, consider the last term. Assuming that the friction &; may be taken constant during
the time interval At, the integral of the random forces may be written as

1 t+At
= / dFT (¢ \/QkBT& § j®z . A1)
t

First of all, notice that the three Cartesian directions may be treated independently from
each other. Next, the sum of /N random numbers with mean zero and variance equal to
unity is a random number with mean zero and variance equal to IV, so

At
1 ul 1 [At
—\2kpT¢&dt Y O, = ——+/2kpT¢dt\] —O,;. 42
AV 2k 3 ;::1 k=R BT¢ i (42)
Introducing this into Eq. (40) and rearranging the result we get after some simple algebra

Ar; = —lviAAt + kBTvilAt + M@i. (43)
& & &
This concludes our derivation of the Brownian propagator.
From now on we do not need to discriminate At from dt anymore, so we will replace
At by dt again. Clearly, the whole procedure that we have gone through for displacements
may be repeated for changes in the structural parameters A™. This finally leads to the
Brownian propagator

dr; = flViAdt + kBTVildt + 2]“BT‘”@i (44)
& & &
1 94 SkpT
d\s = — 04 + B dt@s (45)
QsTs ONg QT
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where we have written the ’friction coefficient’ that goes with A\ as a,75. So, 75 is a
characteristic time governing the relaxation of \4 towards its equilibrium value A% (r3V).
We have assumed that 7, does not depend on A,.

Notice that, whereas time step and friction always occurred as a product £dt in the
Langevin equation, they appear as a fraction % in the Brownian propagator. This means
that with increasing frictions increasingly larger time steps can be used.

4.2 Memory

It is instructive’ to formally integrate Eq. (45) and put the result into the equation that
describes the dynamics of positions, Eq. (44). When doing so, we will neglect the random
contribution in Eq. (45). Using the expression for ®* in Eq. (26) and assuming that all )\
are equal to zero at time zero, we obtain

m t
Vil =Y ol / dE AL (13N (¢))e (/T X (N ()] VAL (9N (1)),
s=1 s

(46)
There are many ways to rewrite this equation. We restrict ourselves to just one of them.
We rewrite the integral in the right hand side according to

t t’ e t t e
1 / gt / gt S ey 1 / at / B (D VL
Ts Jo 0 dt" Ts Jo 1 dt"”

Next we perform the integral ove ¢’ and write A%%(t) as an integral of its derivative from
time zero to time ¢, obtaining

t - !  ONGY (t—t")/ eq(,.3N
-V, 0" = — s | dtf ——e7VTHNTS A t)). 48
20 /0 e “a(r3N (1)) (48)
Performing some cosmetic actions, this may be written in the suggestive form

N t m
—Vidt == / de; (1) - [D @ VA (N () Vaxg (N (1) e 1] (49)
j=170 s=1

which has a strong resemblance to the generalized friction introduced earlier.

Let us now have a closer look at what type of variables can be used as structure pa-
rameters \s. We will illustrate our discussion again using the example of star polymers.
The left most part of Fig. (2) shows two stars equilibrated at a distance 7;;. Next, these
two stars are quickly displaced to a new distance 7. It is clearly seen that the arms of
the stars are ’torn apart’ and will need some time to adjust to the new situation. As time
passes by, the arms more and more relax, until in the rightmost picture they have found
the equilibrium configuration that goes with the new distance r;*. We therefore define
structure parameters \;; with every pair of particles (¢, j) at distances smaller than some
cutoff value R., not necessarily the same as in section (4.4) below. The corresponding
equilibrium values )‘Z‘] (ri;) depend on the distance r;; between the two particles.

11
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Figure 2. Two stars at equilibrium in the leftmost panel, displaced to a new distance in the second panel and next
relaxing towards equilibrium at the new distance, which they reach in the rightmost panel. The thermodynamic
state of the arms is described by a structural parameter \;; which equals /\qu (ri;) in the leftmost panel and

Aff (rise) in the rightmost panel.

4.3 Equilibrium

We now ask what is the equilibrium distribution that goes with the Brownian propagator.
We present our arguments for the case of a independent particles in a potential A. Gener-
alization to the case of a dense suspension of particles is then obvious.

In general we may say that the probability G(r)d>r to find the particle in a cube of
volume d®r = dxdydz evolves according to

0
S GE) ==V - 3(), (50)

where J is the flux of particles, i.e. the number of particles that go through unit area, per
unit of time. Equilibrium occurs when the flux is equal to zero. The flux in our case may
readily be understood to be given by

J(r) = —%G(r)VA(r) —i—kBTG(r)V% + J"4" (1), (51)
where J"%"(r) is the contribution from the random displacements made by the particles.
Since random displacements in the three Cartesian directions are independent, we may
restrict ourselves to treating just one of these.

Consider a plane of unit area at position z. The number of particles that pass through
this plane during time At by making a step of size between A and A + dA in positive
z-direction is given by

%G(x — A/2)Pas(x — AJ2; A)AdA. (52)

Here Paq(z; A)dA is the probability that a particle at position « during time At makes a
step of size between A and A + dAin positive z-direction. The factor of one half takes
into account that only half of the particles move in positive direction. With a similar ex-
pression for particles passing through the plane in negative direction we obtain an overall
contribution to J,*™ from particles through the plane with step-size between A and A+dA

%G(:v — A/2)Pai(x — AJ2; A)AdA — %G(m + A/2)Pas(z + A/2; A)AdA.  (53)

12



After Taylor expanding G and PAa; to first order in A we obtain

~10G(2)
2 Ox

Pau(a: B)(A)AA — SG(x) 3 Pay(r: A)(A)dA. (54)

We next integrate over all values of A and divide by At, obtaining

van _ 0G(x) kpT(x) 0 kpT(x)
JR = or () G(z) ar £ (55)
Generalizing to three Cartesian coordinates we obtain for the total flux
1 1 T
J(r) = ——G(r)VA(r) + kgT(r)G(r)V—— — VI[G(r) k5 (r)] (56)

{r) £(r) &(r)

We have included the possibility that the temperature depends on the position of the parti-
cle.
Now let us draw a few conclusions. First, rewrite the flux as
1

() = ~ 5 GO VA) - k’g?;()r) _ %

We find that besides external forces, both concentration gradients and temperature gradi-
ents give rise to fluxes. Fluxes due to temperature gradients are called Soret fluxes.

Next, assume that the temperature is constant throughout the system. Putting the flux
equal to zero, we find that the distribution is proportional to the Boltzmann factor, i.e.

VG(r) G(r)VkpT(r).  (57)

G(r) oc e~ AW/kaT, (58)

So, the statistical equilibrium distribution gives rise to zero flux, as expected.
Finally, it is not difficult to understand that the equilibrium distribution that goes with
Eqs (44,45) is given by

G(rN XM o e AT A /T (59)

Integrating the last equation over all possible values of the A, we obtain

G(T3N> o /dA77le—A(T3N7X"L)/kBT
_ e—<I>(r3N)/kBT / d)\me_% ¥m, aS(A‘g—)\gq(raN))z/kBT
o e~ 2/ kBT (60)

The distribution of configurations 73" in the stationary state is therefore equal to the ex-
act equilibrium distribution of the system (provided ®(r3") faithfully represents the free
energy of the structural parameters as defined in Eq.(20)). As a result thermodynamic
properties simulated with this model will be the exact thermodynamic properties of the

system.
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4.4 Flow

As they stand, our equations of motion, Eqs (44) and (45), are not Galilei invariant. In
order to achieve this, we include an affine displacement V (r;)dt in the right hand side
of Eq. (44). Notice that this term would have appeared automatically had we started our
derivation of the Brownian propagator with a Langevin equation including a local velocity
term. So its physical meaning is the same as in the Langevin equation. It is a background
flow field with respect to which the particles move and experience friction forces.

Now this forces us to invent a way to calculate the local velocity V (r;) at the position
of particle 7. One way is to make use of a predefined velocity field obtained on the basis
of some macroscopic phenomenological theory. If we want the flow to develop itself as a
result of applied forces and boundary conditions, however, this will not do. We will assume
that the background flow at position r may be obtained as some local average of the drift
velocities of the particles near r, drift velocities being defined as displacements defined by
time intervals. Moreover, we assume that a good representation of the background flow
field may be obtained by giving its value at a discrete set of points, for which we choose
the positions of the particles. Defining v; = V (r;) it is possible to motivate the following
update scheme for the local velocities v;

N N
1.1 2kgT . O,
dvi = —[-=ViA+ ) fij(ri)(v; = vi)ldt + > =P =2, (6D
T & = =V & s
where the random pair vectors must be such that ®;; = —®;;. The functions f;; are
defined according to
15 1 1 T
(1) = ———=Ei(— + —)(1 — =22)3
fij(rij) 27TR3£J( -t pj)( Rc)
r” 7”
pi= QﬂRg Zﬁg i+ (62)

C

Here R, is some cutoff distance such that on average about 15 particles contribute to the
sum in p. We refer for further details to Padding and Briels®.

When dealing with flowing matter, choosing the correct propagator is only part of the
story. In case one is interested in the influence of hydrodynamics on equilibrium properties
one can perform simulations with periodic boundary conditions. This has been done in the
paper by Padding and Briels® and it was found that all theoretical results are reproduced
correctly. If one is interested in flow instabilities that occur in the bulk of the system,
non-equilibrium simulations with Lees-Edwards boundary conditions may be performed.
This has been done to study shear banding with a variety of systems. The example of
telechelic polymers will be discussed below. If, however, interest lies in systems with
hard walls, one has to come up with the correct way to implement stick our partially stick
boundary conditions. These methods have been developed for standard simulations, but
for the present model are still under construction.

S Telechelic polymers

I will restrict myself to discussing one example of a simulation performed with the RaPiD
scheme.
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Figure 3. 3-block copolymers dissolved in water with increasing concentration from left to right. The two outer
blocks are hyprophobic (green) and the middle block hydrophylic (blue). The hydrophobic middle blocks of
some twenty polymers gather together to form micelles, while the middle blocks are dissolved in the solvent.
At low concentrations micelles exist as independent flowers. At higher concentrations the two outer blocks of
one polymer do not necessarily take part in one and the same micelle, but may be part of two different micelles,
thereby forming bridges between them. Bridges are colored red for visualization purposes only.

In Fig. (3) a solution of 3-block co-polymers is depicted. In the left hand side of the
figure the concentration is low, while in the right hand side it is large. The two outer blocks
of the polymer are hydrophobic (green) while the inner block is hydrophylic (blue). At low
concentrations the stars look like flowers. The outer, hydrophobic blocks of some twenty
polymers have gathered together to form a micelle, thereby minimizing the unfavorable
interaction with the solvent. The middle blocks are dissolved in the solvent. With increas-
ing concentrations the hydrophonic outer blocks may take part in two different micelles,
thereby establishing a bridge between the two micelles. These bridges severely influence
the rheological properties of the fluid.

As mentioned above, the transient potential is assumed to be a pairwise sum of all pairs
within a predescribed cutoff distance

N-1
(I)t(,r,3N’ )\m)

] =

a(Xij — A (ri)?. (63)
1

1
2« :

1=1 j=1¢

+

The meaning of the \;; ia taken to be the number of bridges between particles 7 and j. Then
it is reasonable to assume that all o’s are equal. Moreover the thermodynamic potential in
this case is best represented by a sum of pair potentials as well. The pair contributions were
calculated by means od Scheutjens-Fleer theory. All parameters in the model were known
except o. For more information see Sprakel e. al.®. In Fig. (4) we present the results of our
calculations of viscosities together with experimental values. The experimental viscosities
were used to fit the only unknown parameter in the model. The interesting point is that
viscosities vary by five orders of magnitude when the concentratios vary by three orders of
magnitude, yet all of this can be reproduced by adjusting only one parameter.

Encouraged by our result so far, we now try to go for predictions. To this end we have
performed non-equilibrium simulations in which the systems are sheared according to well
established methods in simulation country. In Fig. (5) results are shown for a system with
concentration of 20 gram/liter and a shear rate of 4/7, where 7 is the characteristic time
occurring in the propagator for );;. In the left panel, upper figure the stress is plotted as
function of time lapse since the start of the run. It is clearly seen that, initially, the stress
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Figure 4. Viscosities versus concentration. Open circles are experimental values and crosses are theoretical
results. The black circles are the results of simulations with artificially enlarged frictions. The reason for doing
so is that these larger frictions allow larger time steps and therefore shorter simulations. As can be seen changing
the friction to (incorrect) larger values only influences the results at small concentrations. This tells us that, while
at low concentrations viscosities are determined by frictions with the solvent, at higher concentrations viscosities
are determined by interactions between the particles, as expected.

is constant, but, after some time, begins to drop until it reaches a new stationary value. In
the left panel, lower figure the flow velocity in z-direction is plotted for various equidistant
positions along the gradient direction. In a normal situation, with a constant shear rate at
all positions along the gradient direction, all lines would be parallel and equidistant (since
the velocity would linearly increase along the gradient direction). We see however, that
concomitantly with the drop of the stress velocities begin to change until after some time
the velocities in a number of planes along the gradient direction differ from each other by
only very small amounts. One may say that the system has split into two parts, one in
which the shear rate is large, and one in which the shear rate is very low. In the example
discussed here, the band with the lower shear rate has a somewhat larger concentration
than the one with the higher shear rate. As a result the two bands can easily be visualized
as seen in the right panel. The phenomenon just described is called shear banding, and has
been theoretically analyzed by Dhont!?. It is important to notice that banding would not
have occurred in our simulations had we imposed a linear flow field instead of measured
the background flow as described in the theory section.

In Fig. (6) we show some quantitative results for the banding observed with the system
of Fig. (5). In the left panel we present the concentrations in the two bands as a function
of applied shear rate. In cases when no banding occurs, the concentration is constant and
equal to 20 gram/liter. For shear rates when banding does occur, two concentrations are
given, one for each band. As can be seen they clearly differ. In the right panel, shear rates
in the two bands are plotted as a function of the applied shear rate. Again, when no banding
occurs, the system is homogeneously sheared with only one shear rate, equal to the applied
shear rate. In this case, also experimental results are available (open circles), and it is seen
that experiment and simulations are very well in agreement.

6 Concluding Remarks

In this paper we have reviewed the standard examples of stochastic dynamics simulations
and adjusted them to be applicable to simulate the flow of complex soft matter in com-
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Figure 5. Results from non-equilibrium simulations with telechelic systems of concentrations equal to 20
gram/liter and shear rates equal to 4/7. Left upper figure shows tresses as function of time lapse since the
start of the run. After some initial period of constant stresses, the stresses begin to drop to lower values until they
reach a new stationary value. Concomitantly with the stress drop the velocity field changes (left lower figure)
such that the system splits into two bands, one of which has a shear rate smaller than the applied shear rate, while
the other has a shear rate larger that the applied shear rate. Since the concentrations in the two bands differ, the
bands can be easily observed, as shown in the right part of the figure. In these figures, flow is from left to right
with increasing velocities from bottom to top. The ratio between flow velocity and vertical position is the shear
rate. In the dark bands shear rates are less then in the lighter bands.
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Figure 6. Quantitative results from the simulations described in Fig. (5). In the left panel the concentrations in
the two bands are plotted as a function of the applied shear rates. When no banding occurs the concentration
is constant throughout the box and equal to the overall concentration. When banding occurs the concentration
in the high shear rate band is less than the overall concentration while that in the low shear rate band is larger
than the overall concentration. In the right panel the corresponding shear rates are plotted as a function of the
imposed shear rates. In this case experimental results are available and seen to be in very good agreement with
the simulated results.

plex geometries. The changes needed to accommodate to soft matter systems consisted
of inclusion of memory, adjusting the method to overdamped systems and guaranteeing
hydrodynamics also for the Brownian propagator.

I have presented results for only one system, solutions of telechelic polymers. Sev-
eral more systems have been successfully simulated by now. The linear rheology of linear
polymers was shown to be well represented by the RaPiD model for frequencies just be-
yond the first crossing point of the shear and loss moduli. Non linear rheology was well
reproduced up to rather high shear rates. One of the success stories of the method has been
with pressure sensitive materials where both shear and elongational viscosities were well
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reproduced. In times where The Web of Science plays an important role in rating scientists
the interested reader may find results obtained with the RaPiD model by typing in any of
the names mentioned in the Acknowledgements below.
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