001     188358
005     20210129215158.0
024 7 _ |2 doi
|a 10.1103/PhysRevLett.113.025504
024 7 _ |2 ISSN
|a 0031-9007
024 7 _ |2 ISSN
|a 1079-7114
024 7 _ |2 WOS
|a WOS:000339171300020
024 7 _ |2 Handle
|a 2128/9212
037 _ _ |a FZJ-2015-01764
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Heuser, Brent J.
|b 0
|e Corresponding Author
245 _ _ |a Direct Measurement of Hydrogen Dislocation Pipe Diffusion in Deformed Polycrystalline Pd Using Quasielastic Neutron Scattering
260 _ _ |a College Park, Md.
|b APS
|c 2014
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1442488074_30504
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The temperature-dependent diffusivity D(T) of hydrogen solute atoms trapped at dislocations—dislocation pipe diffusion of hydrogen—in deformed polycrystalline PdHx (x∼10−3  [H]/[Pd]) has been quantified with quasielastic neutron scattering between 150 and 400 K. We observe diffusion coefficients for trapped hydrogen elevated by one to two orders of magnitude above bulk diffusion. Arrhenius diffusion behavior has been observed for dislocation pipe diffusion and regular bulk diffusion, the latter in well-annealed polycrystalline Pd. For regular bulk diffusion of hydrogen in Pd we find D(T)=D0exp(−Ea/kT)=0.005exp(−0.23  eV/kT)  cm2/s, in agreement with the known diffusivity of hydrogen in Pd. For hydrogen dislocation pipe diffusion we find D(T)≃10−5exp(−Ea/kT)  cm2/s, where Ea=0.042 and 0.083 eV for concentrations of 0.52×10−3 and 1.13×10−3[H]/[Pd], respectively. Ab initio computations provide a physical basis for the pipe diffusion pathway and confirm the reduced barrier height.
536 _ _ |0 G:(DE-HGF)POF2-54G24
|a 54G - JCNS (POF2-54G24)
|c POF2-54G24
|f POF II
|x 0
536 _ _ |0 G:(DE-HGF)POF2-451
|a 451 - Soft Matter Composites (POF2-451)
|c POF2-451
|f POF II
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Trinkle, Dallas R.
|b 1
700 1 _ |0 P:(DE-Juel1)143752
|a Jalarvo, Niina
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Serio, Joseph
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Schiavone, Emily J.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Mamontov, Eugene
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Tyagi, Madhusudan
|b 6
773 _ _ |0 PERI:(DE-600)1472655-5
|a 10.1103/PhysRevLett.113.025504
|g Vol. 113, no. 2, p. 025504
|n 2
|p 025504
|t Physical review letters
|v 113
|x 1079-7114
|y 2014
856 4 _ |u http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.113.025504
856 4 _ |u https://juser.fz-juelich.de/record/188358/files/PhysRevLett.113.025504.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/188358/files/PhysRevLett.113.025504.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/188358/files/PhysRevLett.113.025504.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/188358/files/PhysRevLett.113.025504.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/188358/files/PhysRevLett.113.025504.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/188358/files/PhysRevLett.113.025504.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:188358
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143752
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|9 G:(DE-HGF)POF3-6G4
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v Facility topic: Neutrons for Research on Condensed Matter
|x 0
913 2 _ |0 G:(DE-HGF)POF3-551
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Functional Macromolecules and Complexes
|x 1
913 2 _ |0 G:(DE-HGF)POF3-621
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|9 G:(DE-HGF)POF3-6215
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v In-house research on the structure, dynamics and function of matter
|x 2
913 1 _ |0 G:(DE-HGF)POF2-54G24
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|v JCNS
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |0 G:(DE-HGF)POF2-451
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Soft Matter Composites
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-SNS-20110128
|k JCNS-SNS
|l JCNS-SNS
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-SNS-20110128
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)JCNS-SNS-20110128


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21