000188360 001__ 188360
000188360 005__ 20210129215159.0
000188360 0247_ $$2doi$$a10.1016/j.ssi.2013.10.014
000188360 0247_ $$2ISSN$$a0167-2738
000188360 0247_ $$2ISSN$$a1872-7689
000188360 0247_ $$2WOS$$aWOS:000338810500128
000188360 037__ $$aFZJ-2015-01766
000188360 082__ $$a530
000188360 1001_ $$0P:(DE-HGF)0$$aNozaki, Hiroshi$$b0$$eCorresponding Author
000188360 245__ $$aLi diffusive behavior of garnet-type oxides studied by muon-spin relaxation and QENS
000188360 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000188360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1426175035_7693
000188360 3367_ $$2DataCite$$aOutput Types/Journal article
000188360 3367_ $$00$$2EndNote$$aJournal Article
000188360 3367_ $$2BibTeX$$aARTICLE
000188360 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188360 3367_ $$2DRIVER$$aarticle
000188360 520__ $$aA diffusive behavior of Li+ ion in a garnet-type oxide, Li5 + xLa3ZrxNb2 − x012 with x = 0–2, has been investigated by both a positive muon-spin relaxation (μ+SR) and quasi-elastic neutron scattering (QENS) technique using powder samples. The μ+SR results revealed that Li+ ions start to diffuse above ~ 150 K for the whole samples measured. The activation energy of Li diffusion (Ea) estimated from the μ+SR data was in good agreement with Ea obtained by the QENS measurements. However, both Eas were about a half of Ea of ionic conductivity of Li+ (σLi), which was evaluated by AC-impedance measurements on sintered pellets. This indicated the serious effect of grain boundary and/or surface on Ea. Furthermore, since the diffusion coefficient of Li+ estimated by μ+SR is roughly independent of x, the number of mobile Li+ in the garnet lattice was found to be the predominant parameter to determine σLi.
000188360 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x0
000188360 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x1
000188360 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188360 7001_ $$0P:(DE-HGF)0$$aHarada, Masashi$$b1
000188360 7001_ $$0P:(DE-HGF)0$$aOhta, Shingo$$b2
000188360 7001_ $$0P:(DE-HGF)0$$aWatanabe, Isao$$b3
000188360 7001_ $$0P:(DE-HGF)0$$aMiyake, Yasuhiro$$b4
000188360 7001_ $$0P:(DE-HGF)0$$aIkedo, Yutaka$$b5
000188360 7001_ $$0P:(DE-Juel1)143752$$aJalarvo, Niina$$b6$$ufzj
000188360 7001_ $$0P:(DE-HGF)0$$aMamontov, Eugene$$b7
000188360 7001_ $$0P:(DE-HGF)0$$aSugiyama, Jun$$b8
000188360 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2013.10.014$$gVol. 262, p. 585 - 588$$p585 - 588$$tSolid state ionics$$v262$$x0167-2738$$y2014
000188360 8564_ $$uhttp://www.sciencedirect.com/science/article/pii/S0167273813004906
000188360 909CO $$ooai:juser.fz-juelich.de:188360$$pVDB
000188360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188360 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188360 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188360 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000188360 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188360 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000188360 9141_ $$y2014
000188360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143752$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000188360 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000188360 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x1
000188360 9132_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000188360 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x0
000188360 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x1
000188360 920__ $$lyes
000188360 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung$$x0
000188360 9201_ $$0I:(DE-Juel1)JCNS-SNS-20110128$$kJCNS-SNS$$lJCNS-SNS$$x1
000188360 980__ $$ajournal
000188360 980__ $$aVDB
000188360 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000188360 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000188360 980__ $$aUNRESTRICTED
000188360 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128