000188373 001__ 188373
000188373 005__ 20210129215159.0
000188373 0247_ $$2doi$$a10.1039/C4CE01637H
000188373 0247_ $$2WOS$$aWOS:000345065400022
000188373 037__ $$aFZJ-2015-01771
000188373 082__ $$a540
000188373 1001_ $$0P:(DE-HGF)0$$aDeringer, Volker L.$$b0
000188373 245__ $$aAb initio ORTEP drawings: a case study of N-based molecular crystals with different chemical nature
000188373 260__ $$aLondon$$bRSC$$c2014
000188373 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1426151671_7620
000188373 3367_ $$2DataCite$$aOutput Types/Journal article
000188373 3367_ $$00$$2EndNote$$aJournal Article
000188373 3367_ $$2BibTeX$$aARTICLE
000188373 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188373 3367_ $$2DRIVER$$aarticle
000188373 520__ $$aThe thermal motion of atoms and functional groups is a key characteristic of any molecular crystal, and such motion derived from scattering experiments is conveniently visualised by means of thermal ellipsoids (the famous “ORTEP” drawings). Unfortunately, it is often impossible to obtain the underlying anisotropic displacement parameters (ADPs) for hydrogen atoms, due to their low X-ray scattering power, and sometimes no ADPs can be refined at all even for heavier atoms. In these cases, it would seem advantageous to estimate ADPs by first-principles techniques, and indeed such ab initio ORTEP plots have become available very recently. Here, we test this young method for a representative set of hydrogen-bonded molecular crystals: first, we study urea (CON2H4) as a well-known benchmark, then, its all-nitrogen analogue guanidine (CN3H5); finally, we move on to rubidium guanidinate (RbCN3H4) as a specimen with pronounced ionic interactions. For all three systems, ADPs have been obtained from density-functional theory (DFT) based phonon computations using the PHONOPY software. The results are compared with neutron-diffraction data as the experimental “benchmark” in this regard, and a critical discussion of experimental aspects is given. We observe excellent agreement between experiment and theory for the hydrogen-bonded systems urea and guanidine at low temperature, whereas high-temperature data for guanidine deviate visibly, and the more salt-like RbCN3H4 may suffer from a less-than-ideal description even at 12 K. Both is discussed in depth as there are possible solutions and directions for further research. Generally, the present results shine a favourable light on a future, more routine application of combined experimental/theoretical approaches in chemical crystallography.
000188373 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x0
000188373 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x1
000188373 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x2
000188373 536__ $$0G:(DE-HGF)POF2-542$$a542 - Neutrons (POF2-542)$$cPOF2-542$$fPOF II$$x3
000188373 536__ $$0G:(DE-HGF)POF2-544$$a544 - In-house Research with PNI (POF2-544)$$cPOF2-544$$fPOF II$$x4
000188373 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188373 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x2
000188373 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000188373 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x1
000188373 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x2
000188373 65017 $$0V:(DE-MLZ)GC-180$$2V:(DE-HGF)$$aOthers$$x1
000188373 65017 $$0V:(DE-MLZ)GC-120$$2V:(DE-HGF)$$aInformation Technology and Functional Materials $$x0
000188373 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
000188373 7001_ $$0P:(DE-HGF)0$$aStoffel, Ralf P.$$b1
000188373 7001_ $$0P:(DE-HGF)0$$aTogo, Atsushi$$b2
000188373 7001_ $$0P:(DE-HGF)0$$aEck, Bernhard$$b3
000188373 7001_ $$0P:(DE-Juel1)164297$$aMeven, Martin$$b4$$ufzj
000188373 7001_ $$0P:(DE-HGF)0$$aDronskowski, Richard$$b5$$eCorresponding Author
000188373 773__ $$0PERI:(DE-600)2025075-7$$a10.1039/C4CE01637H$$gVol. 16, no. 47, p. 10907 - 10915$$n47$$p10907 - 10915$$tCrystEngComm$$v16$$x1466-8033$$y2014
000188373 8564_ $$uhttps://juser.fz-juelich.de/record/188373/files/FZJ-2015-01771.pdf$$yRestricted
000188373 909CO $$ooai:juser.fz-juelich.de:188373$$pVDB$$pVDB:MLZ
000188373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000188373 9132_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000188373 9132_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000188373 9132_ $$0G:(DE-HGF)POF3-600$$1G:(DE-HGF)POF3$$2G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bProgrammorientierte Förderung$$lPOF III$$vForschungsbereich Materie$$x2
000188373 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000188373 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x0
000188373 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x1
000188373 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x2
000188373 9131_ $$0G:(DE-HGF)POF2-542$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vNeutrons$$x3
000188373 9131_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vIn-house Research with PNI$$x4
000188373 9141_ $$y2014
000188373 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188373 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188373 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188373 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188373 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188373 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188373 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188373 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000188373 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000188373 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188373 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000188373 920__ $$lyes
000188373 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000188373 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000188373 980__ $$ajournal
000188373 980__ $$aVDB
000188373 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000188373 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000188373 980__ $$aUNRESTRICTED
000188373 981__ $$aI:(DE-Juel1)JCNS-2-20110106