001     188373
005     20210129215159.0
024 7 _ |a 10.1039/C4CE01637H
|2 doi
024 7 _ |a WOS:000345065400022
|2 WOS
037 _ _ |a FZJ-2015-01771
082 _ _ |a 540
100 1 _ |a Deringer, Volker L.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Ab initio ORTEP drawings: a case study of N-based molecular crystals with different chemical nature
260 _ _ |a London
|c 2014
|b RSC
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1426151671_7620
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The thermal motion of atoms and functional groups is a key characteristic of any molecular crystal, and such motion derived from scattering experiments is conveniently visualised by means of thermal ellipsoids (the famous “ORTEP” drawings). Unfortunately, it is often impossible to obtain the underlying anisotropic displacement parameters (ADPs) for hydrogen atoms, due to their low X-ray scattering power, and sometimes no ADPs can be refined at all even for heavier atoms. In these cases, it would seem advantageous to estimate ADPs by first-principles techniques, and indeed such ab initio ORTEP plots have become available very recently. Here, we test this young method for a representative set of hydrogen-bonded molecular crystals: first, we study urea (CON2H4) as a well-known benchmark, then, its all-nitrogen analogue guanidine (CN3H5); finally, we move on to rubidium guanidinate (RbCN3H4) as a specimen with pronounced ionic interactions. For all three systems, ADPs have been obtained from density-functional theory (DFT) based phonon computations using the PHONOPY software. The results are compared with neutron-diffraction data as the experimental “benchmark” in this regard, and a critical discussion of experimental aspects is given. We observe excellent agreement between experiment and theory for the hydrogen-bonded systems urea and guanidine at low temperature, whereas high-temperature data for guanidine deviate visibly, and the more salt-like RbCN3H4 may suffer from a less-than-ideal description even at 12 K. Both is discussed in depth as there are possible solutions and directions for further research. Generally, the present results shine a favourable light on a future, more routine application of combined experimental/theoretical approaches in chemical crystallography.
536 _ _ |a 54G - JCNS (POF2-54G24)
|0 G:(DE-HGF)POF2-54G24
|c POF2-54G24
|f POF II
|x 0
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 1
536 _ _ |a 424 - Exploratory materials and phenomena (POF2-424)
|0 G:(DE-HGF)POF2-424
|c POF2-424
|f POF II
|x 2
536 _ _ |a 542 - Neutrons (POF2-542)
|0 G:(DE-HGF)POF2-542
|c POF2-542
|f POF II
|x 3
536 _ _ |a 544 - In-house Research with PNI (POF2-544)
|0 G:(DE-HGF)POF2-544
|c POF2-544
|f POF II
|x 4
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 2
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 2 7 |a Crystallography
|0 V:(DE-MLZ)SciArea-240
|2 V:(DE-HGF)
|x 1
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 2
650 1 7 |a Others
|0 V:(DE-MLZ)GC-180
|2 V:(DE-HGF)
|x 1
650 1 7 |a Information Technology and Functional Materials
|0 V:(DE-MLZ)GC-120
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e HEiDi: Single crystal diffractometer on hot source
|f SR9b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)HEIDI-20140101
|5 EXP:(DE-MLZ)HEIDI-20140101
|6 EXP:(DE-MLZ)SR9b-20140101
|x 0
700 1 _ |a Stoffel, Ralf P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Togo, Atsushi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Eck, Bernhard
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Meven, Martin
|0 P:(DE-Juel1)164297
|b 4
|u fzj
700 1 _ |a Dronskowski, Richard
|0 P:(DE-HGF)0
|b 5
|e Corresponding Author
773 _ _ |a 10.1039/C4CE01637H
|g Vol. 16, no. 47, p. 10907 - 10915
|0 PERI:(DE-600)2025075-7
|n 47
|p 10907 - 10915
|t CrystEngComm
|v 16
|y 2014
|x 1466-8033
856 4 _ |u https://juser.fz-juelich.de/record/188373/files/FZJ-2015-01771.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:188373
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)164297
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 1
913 2 _ |a DE-HGF
|b Programmorientierte Förderung
|l POF III
|1 G:(DE-HGF)POF3
|0 G:(DE-HGF)POF3-600
|2 G:(DE-HGF)POF
|v Forschungsbereich Materie
|9 G:(DE-HGF)POF3-6G15
|x 2
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 3
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-54G24
|2 G:(DE-HGF)POF2-500
|v JCNS
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-424
|2 G:(DE-HGF)POF2-400
|v Exploratory materials and phenomena
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-542
|2 G:(DE-HGF)POF2-500
|v Neutrons
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-544
|2 G:(DE-HGF)POF2-500
|v In-house Research with PNI
|x 4
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21