000188384 001__ 188384
000188384 005__ 20240711085644.0
000188384 0247_ $$2doi$$a10.1007/s40553-015-0043-z
000188384 0247_ $$2WOS$$aWOS:000218513600007
000188384 037__ $$aFZJ-2015-01782
000188384 082__ $$a620
000188384 1001_ $$0P:(DE-Juel1)138169$$aDu, Linnan$$b0$$ufzj
000188384 245__ $$aReaction Behavior of the Li-N-H Hydrogen Storage System with Boron Nitride as an Additive
000188384 260__ $$aNew York, NY$$bSpringer$$c2015
000188384 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1426493545_12957
000188384 3367_ $$2DataCite$$aOutput Types/Journal article
000188384 3367_ $$00$$2EndNote$$aJournal Article
000188384 3367_ $$2BibTeX$$aARTICLE
000188384 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188384 3367_ $$2DRIVER$$aarticle
000188384 520__ $$aThis work begins with a discussion of the desorption, reaction rate-limiting step of a LiNH2-LiH hydrogen storage system. Using microstructural and thermodynamic studies, it explains the working mechanism of BN as an additive in Li-N-H hydrogen storage materials. High-energy wet ball milling with THF was applied to the LiNH2 + 1.2LiH mixture. The results obtained in this work show that the rate-limiting step of the desorption reaction depends on the degree of oxidation and amount of LiH in the system. The activation energy of the desorption reaction of both ball-milled LiNH2 and LiNH2 + 1.2LiH samples was reduced with BN as an additive. BN had no clear impact on the crystallite sizes of LiNH2 + 1.2LiH as-milled samples. However, it was found that BN stabilizes the crystallite sizes of LiNH2 + 1.2LiH samples during the high-temperature desorption and absorption processes.
000188384 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000188384 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188384 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b1$$eCorresponding Author$$ufzj
000188384 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b2
000188384 773__ $$0PERI:(DE-600)2750815-8$$a10.1007/s40553-015-0043-z$$n1$$p50-57$$tMetallurgical and materials transactions / E$$v2$$x2196-2936$$y2015
000188384 8564_ $$uhttps://juser.fz-juelich.de/record/188384/files/FZJ-2015-01782.pdf$$yRestricted
000188384 909CO $$ooai:juser.fz-juelich.de:188384$$pVDB
000188384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000188384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000188384 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000188384 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000188384 9141_ $$y2015
000188384 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000188384 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000188384 980__ $$ajournal
000188384 980__ $$aVDB
000188384 980__ $$aI:(DE-Juel1)IEK-1-20101013
000188384 980__ $$aUNRESTRICTED
000188384 981__ $$aI:(DE-Juel1)IMD-2-20101013