000188389 001__ 188389
000188389 005__ 20240619091129.0
000188389 0247_ $$2WOS$$aWOS:000350679300013
000188389 0247_ $$2doi$$a10.1039/C4SM02712D
000188389 0247_ $$2altmetric$$aaltmetric:3111816
000188389 0247_ $$2pmid$$apmid:25626114
000188389 0247_ $$2Handle$$a2128/22909
000188389 037__ $$aFZJ-2015-01787
000188389 082__ $$a530
000188389 1001_ $$0P:(DE-HGF)0$$aArteta, Marianna Yanez$$b0$$eCorresponding Author
000188389 245__ $$aOn the formation of dendrimer/nucleolipids surface films for directed self-assembly
000188389 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2015
000188389 3367_ $$2DRIVER$$aarticle
000188389 3367_ $$2DataCite$$aOutput Types/Journal article
000188389 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434982072_32632
000188389 3367_ $$2BibTeX$$aARTICLE
000188389 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188389 3367_ $$00$$2EndNote$$aJournal Article
000188389 520__ $$aWe describe the formation and structure of nucleolipid/dendrimer multilayer films controlled by non- covalent interactions to obtain biomaterials that exhibit molecular recognition of nucleic acids. Layers of cationic poly(amidoamine) (PAMAM) dendrimers of generation 4 and the anionic nucleolipids 1,2- dilauroyl-sn-glycero-3-phosphatidylnucleosides (DLPNs) based on uridine (DLPU) and adenosine (DLPA) were first formed at the silica–water interface. The PAMAM/DLPN layers were then exposed to short oligonucleotides, polynucleotides and single stranded DNA (ssDNA). The interfacial properties were characterized using quartz crystal microbalance with dissipation monitoring, attenuated total reflection Fourier transform infrared spectroscopy and neutron reflectometry. Both types of DLPN were found to adsorb as aggregates to preadsorbed PAMAM monolayers with a similar interfacial structure and composition before rinsing with pure aqueous solution. Nucleic acids were found to interact with PAMAM/DLPA layers due to base pairing interactions, while the PAMAM/DLPU layers did not have the same capability. This was attributed to the structure of the DLPA layer, which is formed by aggregates that extend from the interface towards the bulk after rinsing with pure solvent, while the DLPU layer forms compact structures. In complementary experiments using a different protocol, premixed PAMAM/ DLPN samples adsorbed to hydrophilic silica only when the mixtures contained positively charged aggregates, which is rationalized in terms of electrostatic forces. The PAMAM/DLPA layers formed from the adsorption of these mixtures also bind ssDNA although in this case the adsorption is mediated by the opposite charges of the film and the nucleic acid rather than specific base pairing. The observed molecular recognition of nucleic acids by dendrimers functionalized via non-covalent interactions with nucleolipids is discussed in terms of biomedical applications such as gene vectors and biosensors.
000188389 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000188389 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000188389 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000188389 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000188389 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x2
000188389 65017 $$0V:(DE-MLZ)GC-150-1$$2V:(DE-HGF)$$aKey Technologies$$x1
000188389 65017 $$0V:(DE-MLZ)GC-130$$2V:(DE-HGF)$$aLife Science and Health$$x0
000188389 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000188389 693__ $$0EXP:(DE-MLZ)N-REX-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)N-REX-20140101$$6EXP:(DE-MLZ)NL1-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eNREX: Neutron reflectometer with X-ray option$$fNL1$$x1
000188389 7001_ $$0P:(DE-HGF)0$$aBerti, Debora$$b1
000188389 7001_ $$0P:(DE-HGF)0$$aMontis, Costanza$$b2
000188389 7001_ $$0P:(DE-HGF)0$$aCampbell, Richard A.$$b3
000188389 7001_ $$0P:(DE-HGF)0$$aEriksson, Caroline$$b4
000188389 7001_ $$0P:(DE-HGF)0$$aClifton, Luke A.$$b5
000188389 7001_ $$0P:(DE-HGF)0$$aSkoda, Maximilian W. A.$$b6
000188389 7001_ $$0P:(DE-HGF)0$$aSoltwedel, Olaf$$b7
000188389 7001_ $$0P:(DE-Juel1)158075$$aKoutsioumpas, Alexandros$$b8$$ufzj
000188389 7001_ $$0P:(DE-HGF)0$$aBaglioni, Piero$$b9
000188389 7001_ $$0P:(DE-HGF)0$$aNylander, Tommy$$b10
000188389 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C4SM02712D$$n10$$p1973-1990$$tSoft matter$$v11$$x1744-683X$$y2015
000188389 8564_ $$uhttp://pubs.rsc.org/en/content/articlepdf/2015/sm/c4sm02712d
000188389 8564_ $$uhttps://juser.fz-juelich.de/record/188389/files/c4sm02712d-2.pdf$$yOpenAccess
000188389 8564_ $$uhttps://juser.fz-juelich.de/record/188389/files/c4sm02712d-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000188389 909CO $$ooai:juser.fz-juelich.de:188389$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000188389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158075$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000188389 9130_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vJCNS$$x0
000188389 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000188389 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000188389 9141_ $$y2015
000188389 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000188389 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188389 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000188389 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188389 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188389 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188389 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188389 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000188389 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000188389 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188389 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188389 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000188389 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188389 920__ $$lyes
000188389 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000188389 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung$$x1
000188389 980__ $$ajournal
000188389 980__ $$aVDB
000188389 980__ $$aUNRESTRICTED
000188389 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000188389 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000188389 9801_ $$aFullTexts