000188412 001__ 188412
000188412 005__ 20240619092123.0
000188412 0247_ $$2doi$$a10.1021/jp5058429
000188412 0247_ $$2ISSN$$a1089-5639
000188412 0247_ $$2ISSN$$a1520-5215
000188412 0247_ $$2WOS$$aWOS:000341121000048
000188412 0247_ $$2altmetric$$aaltmetric:2577448
000188412 0247_ $$2pmid$$apmid:25099129
000188412 037__ $$aFZJ-2015-01810
000188412 082__ $$a530
000188412 1001_ $$0P:(DE-HGF)0$$aPiecha-Bisiorek, A.$$b0$$eCorresponding Author
000188412 245__ $$aStructure and Tunneling Splitting Spectra of Methyl Groups of Tetramethylpyrazine in Complexes with Chloranilic and Bromanilic Acids
000188412 260__ $$aWashington, DC$$bSoc.$$c2014
000188412 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1426256883_24603
000188412 3367_ $$2DataCite$$aOutput Types/Journal article
000188412 3367_ $$00$$2EndNote$$aJournal Article
000188412 3367_ $$2BibTeX$$aARTICLE
000188412 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188412 3367_ $$2DRIVER$$aarticle
000188412 520__ $$aThe crystal and molecular structure of the 2,3,5,6-tetramethylpyrazine (TMP) complex with 2,5-dibromo-3,6-dihydroxy-p-quinone (bromanilic acid, BRA) has been studied and the results are compared with TMP CLA (2,5-dichloro-3,6-dihydroxy-p-quinone (chloranilic acid, CLA) complex. The X-ray structure of TMP BRA complex indicates the formation of dimeric units, in which two BRA– anions are connected by two O–H···O (2.646(2) Å) hydrogen bonds, whereas the cations and anions are joined together by strong N+–H···O– (2.657(2) Å) hydrogen bonds. The results are analyzed in terms of both the methyl group surroundings and the C–H···O and N+–H···O– (or N···H–O) bridge formations. Both effects, the strength of the N+–H···O– hydrogen bonds and steric hindrance for the rotations, are responsible for the CH3 group dynamics. For the TMP CLA and TMP BRA complexes, the inelastic neutron backscattering spectra were also investigated. In the case of TMP CLA, four tunneling signals have been observed in the energy range ±30 μeV, which indicates four inequivalent methyl groups in the crystal structure at the lowest temperature. No tunneling splitting is observed in the case of the TMP BRA complex, most probably due to the overlapping with the elastic peak. The tunneling results are consistent with the 1H NMR spin–lattice relaxation time investigations in a wide temperature range, which also point to the CH3 group tunneling effect in the case of TMP CLA.
000188412 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x0
000188412 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188412 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000188412 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x2
000188412 65017 $$0V:(DE-MLZ)GC-150-1$$2V:(DE-HGF)$$aKey Technologies$$x1
000188412 65017 $$0V:(DE-MLZ)GC-160$$2V:(DE-HGF)$$aFundamental Science $$x0
000188412 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000188412 7001_ $$0P:(DE-HGF)0$$aBator, G.$$b1
000188412 7001_ $$0P:(DE-HGF)0$$aSawka-Dobrowolska, W.$$b2
000188412 7001_ $$0P:(DE-HGF)0$$aSobczyk, L.$$b3
000188412 7001_ $$0P:(DE-HGF)0$$aRok, M.$$b4
000188412 7001_ $$0P:(DE-HGF)0$$aMedycki, W.$$b5
000188412 7001_ $$0P:(DE-Juel1)130949$$aSchneider, G. J.$$b6$$ufzj
000188412 773__ $$0PERI:(DE-600)2006031-2$$a10.1021/jp5058429$$gVol. 118, no. 34, p. 7159 - 7166$$n34$$p7159 - 7166$$tThe @journal of physical chemistry <Washington, DC> / A$$v118$$x1520-5215$$y2014
000188412 8564_ $$uhttps://juser.fz-juelich.de/record/188412/files/FZJ-2015-01810.pdf$$yRestricted
000188412 909CO $$ooai:juser.fz-juelich.de:188412$$pVDB$$pVDB:MLZ
000188412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130949$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000188412 9132_ $$0G:(DE-HGF)POF3-600$$1G:(DE-HGF)POF3$$2G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bProgrammorientierte Förderung$$lPOF III$$vForschungsbereich Materie$$x0
000188412 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000188412 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x0
000188412 9141_ $$y2014
000188412 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188412 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188412 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188412 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188412 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188412 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188412 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188412 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000188412 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188412 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000188412 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000188412 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000188412 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x2
000188412 980__ $$ajournal
000188412 980__ $$aVDB
000188412 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000188412 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000188412 980__ $$aI:(DE-Juel1)ICS-1-20110106
000188412 980__ $$aUNRESTRICTED
000188412 981__ $$aI:(DE-Juel1)IBI-8-20200312
000188412 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000188412 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000188412 981__ $$aI:(DE-Juel1)ICS-1-20110106