001     188517
005     20240619091131.0
037 _ _ |a FZJ-2015-01876
041 _ _ |a English
100 1 _ |a Schrader, Tobias Erich
|0 P:(DE-Juel1)138266
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a 15th International Conference on the Crystallization of Biological Macromolecules
|g ICCBM15
|c Hamburg
|d 2014-09-17 - 2014-09-20
|w Germany
245 _ _ |a BioDiff - a DiffractometerOptimized for Crystals withLarge Unit Cells
260 _ _ |c 2014
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1426170417_7587
|2 PUB:(DE-HGF)
|x Plenary/Keynote
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a In recent years many new neutron protein diffractometers have become operational, e.g. Mandi at SNS, Imagine at HIFR, BioDiff at MLZ The research reactor Heinz Maier-Leibnitz (FRM II) is a modern high flux neutron source which feeds some 30 state of the art neutron beam instruments. Currently 24 are operational, others in commissioning or under construction. The newly built neutron single crystal diffractometer BIODIFF is especially designed to collect data from crystals with large unit cells. The main field of application is the structural analysis of proteins, especially the determination of hydrogen atom positions. BIODIFF is a joint project of the Jülich Centre for Neutron Science (JCNS) and the FRM II. Typical scientific questions addressed are the determination of protonation states of amino acid side chains (see e. g. [1,2]) and the characterization of the hydrogen bonding network between the protein active centre and an inhibitor or substrate. BIODIFF is designed as a monochromatic instrument. By using a highly orientated pyrolytic graphite monochromator (PG002) the diffractometer is able to operate in the wavelength range of 2.4 Å to about 5.6 Å. Contaminations of higher order wavelengths are removed by a neutron velocity selector. To cover a large solid angle the main detector of BIODIFF consists of a neutron imaging plate in a cylindrical geometry with online read-out capability. A fast Li/ZnS scintillator CCD camera is available for additional detection abilities. An optical CCD-camera pointing at the sample position is used to quickly align the crystal with respect to the neutron beam. The main advantage of BIODIFF is the possibility to adapt the wavelength to the size of the unit cell of the sample crystal while operating with a clean monochromatic beam that keeps the background level low. BIODIFF is equipped with a standard Oxford Cryosystem “Cryostream 700+” which allows measurements in the temperature regime from 90K up to 500K (see Figure underneath).
536 _ _ |a 451 - Soft Matter Composites (POF2-451)
|0 G:(DE-HGF)POF2-451
|c POF2-451
|f POF II
|x 0
536 _ _ |a 54G - JCNS (POF2-54G24)
|0 G:(DE-HGF)POF2-54G24
|c POF2-54G24
|f POF II
|x 1
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 1
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 2
650 1 7 |a Others
|0 V:(DE-MLZ)GC-180
|2 V:(DE-HGF)
|x 1
650 1 7 |a Life Science and Health
|0 V:(DE-MLZ)GC-130
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e BIODIFF: Diffractometer for large unit cells
|f NL1
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)BIODIFF-20140101
|5 EXP:(DE-MLZ)BIODIFF-20140101
|6 EXP:(DE-MLZ)NL1-20140101
|x 0
773 _ _ |y 2014
856 4 _ |u http://www.iccbm15.org/iccbm15.xhtml
856 4 _ |u https://juser.fz-juelich.de/record/188517/files/FZJ-2015-01876.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:188517
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138266
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 0
913 2 _ |a DE-HGF
|b Programmorientierte Förderung
|l POF III
|1 G:(DE-HGF)POF3
|0 G:(DE-HGF)POF3-600
|2 G:(DE-HGF)POF
|v Forschungsbereich Materie
|9 G:(DE-HGF)POF3-6G15
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 2
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-451
|2 G:(DE-HGF)POF2-400
|v Soft Matter Composites
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-54G24
|2 G:(DE-HGF)POF2-500
|v JCNS
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21