000188562 001__ 188562
000188562 005__ 20220930130040.0
000188562 0247_ $$2doi$$a10.3390/rs70302808
000188562 0247_ $$2WOS$$aWOS:000353685200023
000188562 037__ $$aFZJ-2015-01917
000188562 041__ $$aEnglish
000188562 082__ $$a620
000188562 1001_ $$0P:(DE-Juel1)145515$$aAli, Muhammed$$b0$$eCorresponding Author
000188562 245__ $$aEstimation and Validation of RapidEye-Based Time-Series of Leaf Area Index for Winter Wheat in the Rur Catchment (Germany)
000188562 260__ $$aBasel$$bMDPI$$c2015
000188562 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1426768901_11773
000188562 3367_ $$2DataCite$$aOutput Types/Journal article
000188562 3367_ $$00$$2EndNote$$aJournal Article
000188562 3367_ $$2BibTeX$$aARTICLE
000188562 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188562 3367_ $$2DRIVER$$aarticle
000188562 520__ $$aLeaf Area Index (LAI) is an important variable for numerous processes in various disciplines of bio- and geosciences. In situ measurements are the most accurate source of LAI among the LAI measuring methods, but the in situ measurements have the limitation of being labor intensive and site specific. For spatial-explicit applications (from regional to continental scales), satellite remote sensing is a promising source for obtaining LAI with different spatial resolutions. However, satellite-derived LAI measurements using empirical models require calibration and validation with the in situ measurements. In this study, we attempted to validate a direct LAI retrieval method from remotely sensed images (RapidEye) with in situ LAI (LAIdestr). Remote sensing LAI (LAIrapideye) were derived using different vegetation indices, namely SAVI (Soil Adjusted Vegetation Index) and NDVI (Normalized Difference Vegetation Index). Additionally, applicability of the newly available red-edge band (RE) was also analyzed through Normalized Difference Red-Edge index (NDRE) and Soil Adjusted Red-Edge index (SARE). The LAIrapideye obtained from vegetation indices with red-edge band showed better correlation with LAIdestr (r = 0.88 and Root Mean Square Devation, RMSD = 1.01 & 0.92). This study also investigated the need to apply radiometric/atmospheric correction methods to the time-series of RapidEye Level 3A data prior to LAI estimation. Analysis of the the RapidEye Level 3A data set showed that application of the radiometric/atmospheric correction did not improve correlation of the estimated LAI with in situ LAI.
000188562 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000188562 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000188562 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b1
000188562 7001_ $$0P:(DE-HGF)0$$aStadler, Anja$$b2
000188562 7001_ $$0P:(DE-HGF)0$$aMenz, Gunter$$b3
000188562 7001_ $$0P:(DE-HGF)0$$aThonfeld, Frank$$b4
000188562 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5
000188562 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs70302808$$n3$$p2808-2831$$tRemote sensing$$v7$$x2072-4292$$y2015
000188562 8564_ $$uhttp://www.mdpi.com/2072-4292/7/3/2808
000188562 8564_ $$uhttps://juser.fz-juelich.de/record/188562/files/FZJ-2015-01917.pdf$$yOpenAccess
000188562 8767_ $$92015-03-02$$d2015-03-03$$eAPC$$jZahlung erfolgt$$zCHF 1.080,-
000188562 909CO $$ooai:juser.fz-juelich.de:188562$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000188562 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000188562 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188562 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188562 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188562 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188562 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188562 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000188562 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188562 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000188562 9141_ $$y2015
000188562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145515$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000188562 9130_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000188562 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000188562 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000188562 920__ $$lyes
000188562 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000188562 9801_ $$aFullTexts
000188562 980__ $$ajournal
000188562 980__ $$aVDB
000188562 980__ $$aI:(DE-Juel1)IBG-3-20101118
000188562 980__ $$aUNRESTRICTED
000188562 980__ $$aFullTexts
000188562 980__ $$aAPC