001     188562
005     20220930130040.0
024 7 _ |2 doi
|a 10.3390/rs70302808
024 7 _ |2 WOS
|a WOS:000353685200023
037 _ _ |a FZJ-2015-01917
041 _ _ |a English
082 _ _ |a 620
100 1 _ |0 P:(DE-Juel1)145515
|a Ali, Muhammed
|b 0
|e Corresponding Author
245 _ _ |a Estimation and Validation of RapidEye-Based Time-Series of Leaf Area Index for Winter Wheat in the Rur Catchment (Germany)
260 _ _ |a Basel
|b MDPI
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1426768901_11773
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Leaf Area Index (LAI) is an important variable for numerous processes in various disciplines of bio- and geosciences. In situ measurements are the most accurate source of LAI among the LAI measuring methods, but the in situ measurements have the limitation of being labor intensive and site specific. For spatial-explicit applications (from regional to continental scales), satellite remote sensing is a promising source for obtaining LAI with different spatial resolutions. However, satellite-derived LAI measurements using empirical models require calibration and validation with the in situ measurements. In this study, we attempted to validate a direct LAI retrieval method from remotely sensed images (RapidEye) with in situ LAI (LAIdestr). Remote sensing LAI (LAIrapideye) were derived using different vegetation indices, namely SAVI (Soil Adjusted Vegetation Index) and NDVI (Normalized Difference Vegetation Index). Additionally, applicability of the newly available red-edge band (RE) was also analyzed through Normalized Difference Red-Edge index (NDRE) and Soil Adjusted Red-Edge index (SARE). The LAIrapideye obtained from vegetation indices with red-edge band showed better correlation with LAIdestr (r = 0.88 and Root Mean Square Devation, RMSD = 1.01 & 0.92). This study also investigated the need to apply radiometric/atmospheric correction methods to the time-series of RapidEye Level 3A data prior to LAI estimation. Analysis of the the RapidEye Level 3A data set showed that application of the radiometric/atmospheric correction did not improve correlation of the estimated LAI with in situ LAI.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 1
700 1 _ |0 P:(DE-Juel1)129506
|a Montzka, Carsten
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Stadler, Anja
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Menz, Gunter
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Thonfeld, Frank
|b 4
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, Harry
|b 5
773 _ _ |0 PERI:(DE-600)2513863-7
|a 10.3390/rs70302808
|n 3
|p 2808-2831
|t Remote sensing
|v 7
|x 2072-4292
|y 2015
856 4 _ |u http://www.mdpi.com/2072-4292/7/3/2808
856 4 _ |u https://juser.fz-juelich.de/record/188562/files/FZJ-2015-01917.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:188562
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145515
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129506
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-246
|1 G:(DE-HGF)POF2-240
|2 G:(DE-HGF)POF2-200
|a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
913 0 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 1
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2015
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21