000188567 001__ 188567
000188567 005__ 20240712100949.0
000188567 0247_ $$2doi$$a10.5194/acpd-15-6277-2015
000188567 0247_ $$2ISSN$$a1680-7367
000188567 0247_ $$2ISSN$$a1680-7375
000188567 0247_ $$2Handle$$a2128/8480
000188567 037__ $$aFZJ-2015-01918
000188567 082__ $$a550
000188567 1001_ $$0P:(DE-HGF)0$$aWagner, A.$$b0
000188567 245__ $$aEvaluation of the MACC operational forecast system – potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere
000188567 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000188567 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1444212207_7772
000188567 3367_ $$2DataCite$$aOutput Types/Journal article
000188567 3367_ $$00$$2EndNote$$aJournal Article
000188567 3367_ $$2BibTeX$$aARTICLE
000188567 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188567 3367_ $$2DRIVER$$aarticle
000188567 520__ $$aMonitoring Atmospheric Composition and Climate (MACC/MACCII) currently represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu), which will become fully operational in the course of 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5 day forecasts of atmospheric composition fields. It is the only assimilation system world-wide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases (CO, O3, and NO2) covering the period between 2009 and 2012. A validation was performed based on CO and O3 surface observations from the Global Atmosphere Watch (GAW) network, O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and furthermore, NO2 tropospheric columns derived from the satellite sensors SCIAMACHY and GOME-2, and CO total columns derived from the satellite sensor MOPITT. The MACC system proved capable of reproducing reactive gas concentrations in consistent quality, however, with a seasonally dependent bias compared to surface and satellite observations: for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the years, with monthly Modified Normalised Mean Biases (MNMBs) ranging between −30 and 30% at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterization. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at a highest, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range between −110 and 40% for NO2 and at most −20% for CO, over the investigated regions. The underestimation is likely to result from a combination of errors concerning the dry deposition parameterization and certain limitations in the current emission inventories, together with an insufficiently established seasonality in the emissions.
000188567 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000188567 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000188567 536__ $$0G:(EU-Grant)283576$$aMACC II - Monitoring Atmospheric Composition and Climate Interim Implementation (283576)$$c283576$$fFP7-SPACE-2011-1$$x2
000188567 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188567 7001_ $$0P:(DE-HGF)0$$aBlechschmidt, A.-M.$$b1
000188567 7001_ $$0P:(DE-HGF)0$$aBouarar, I.$$b2
000188567 7001_ $$0P:(DE-HGF)0$$aBrunke, E.-G.$$b3
000188567 7001_ $$0P:(DE-HGF)0$$aClerbaux, C.$$b4
000188567 7001_ $$0P:(DE-HGF)0$$aCupeiro, M.$$b5
000188567 7001_ $$0P:(DE-HGF)0$$aCristofanelli, P.$$b6
000188567 7001_ $$0P:(DE-HGF)0$$aEskes, H.$$b7
000188567 7001_ $$0P:(DE-HGF)0$$aFlemming, J.$$b8
000188567 7001_ $$0P:(DE-HGF)0$$aFlentje, H.$$b9
000188567 7001_ $$0P:(DE-HGF)0$$aGeorge, M.$$b10
000188567 7001_ $$0P:(DE-HGF)0$$aGilge, S.$$b11
000188567 7001_ $$0P:(DE-HGF)0$$aHilboll, A.$$b12
000188567 7001_ $$0P:(DE-HGF)0$$aInness, A.$$b13
000188567 7001_ $$0P:(DE-HGF)0$$aKapsomenakis, J.$$b14
000188567 7001_ $$0P:(DE-HGF)0$$aRichter, A.$$b15
000188567 7001_ $$0P:(DE-HGF)0$$aRies, L.$$b16
000188567 7001_ $$0P:(DE-HGF)0$$aSpangl, W.$$b17
000188567 7001_ $$0P:(DE-Juel1)3709$$aStein, O.$$b18$$ufzj
000188567 7001_ $$0P:(DE-HGF)0$$aWeller, R.$$b19
000188567 7001_ $$0P:(DE-HGF)0$$aZerefos, C.$$b20
000188567 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-15-6277-2015$$gVol. 15, no. 5, p. 6277 - 6335$$n5$$p6277 - 6335$$tAtmospheric chemistry and physics / Discussions$$v15$$x1680-7375$$y2015
000188567 8564_ $$uhttp://www.atmos-chem-phys-discuss.net/15/6277/2015/acpd-15-6277-2015-print.pdf
000188567 8564_ $$uhttps://juser.fz-juelich.de/record/188567/files/FZJ-2015-01918.pdf$$yOpenAccess
000188567 8564_ $$uhttps://juser.fz-juelich.de/record/188567/files/FZJ-2015-01918.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000188567 8564_ $$uhttps://juser.fz-juelich.de/record/188567/files/FZJ-2015-01918.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000188567 8564_ $$uhttps://juser.fz-juelich.de/record/188567/files/FZJ-2015-01918.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000188567 909CO $$ooai:juser.fz-juelich.de:188567$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000188567 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich GmbH$$b18$$kFZJ
000188567 9130_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x0
000188567 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000188567 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000188567 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000188567 9141_ $$y2015
000188567 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000188567 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000188567 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000188567 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188567 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000188567 920__ $$lyes
000188567 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000188567 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000188567 9801_ $$aFullTexts
000188567 980__ $$ajournal
000188567 980__ $$aVDB
000188567 980__ $$aI:(DE-Juel1)IEK-8-20101013
000188567 980__ $$aI:(DE-Juel1)JSC-20090406
000188567 980__ $$aUNRESTRICTED
000188567 981__ $$aI:(DE-Juel1)ICE-3-20101013
000188567 981__ $$aI:(DE-Juel1)JSC-20090406