000188581 001__ 188581
000188581 005__ 20221213131507.0
000188581 0247_ $$2doi$$a10.1103/PhysRevLett.114.106804
000188581 0247_ $$2ISSN$$a0031-9007
000188581 0247_ $$2ISSN$$a1079-7114
000188581 0247_ $$2WOS$$aWOS:000352073400018
000188581 0247_ $$2Handle$$a2128/9210
000188581 0247_ $$2altmetric$$aaltmetric:2902250
000188581 0247_ $$2pmid$$apmid:25815955
000188581 037__ $$aFZJ-2015-01932
000188581 082__ $$a550
000188581 1001_ $$0P:(DE-Juel1)157982$$aSforzini, J.$$b0$$eCorresponding Author
000188581 245__ $$aApproaching Truly Freestanding Graphene: The Structure of Hydrogen-Intercalated Graphene on 6H−SiC(0001)
000188581 260__ $$aCollege Park, Md.$$bAPS$$c2015
000188581 3367_ $$2DRIVER$$aarticle
000188581 3367_ $$2DataCite$$aOutput Types/Journal article
000188581 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670911048_31169
000188581 3367_ $$2BibTeX$$aARTICLE
000188581 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188581 3367_ $$00$$2EndNote$$aJournal Article
000188581 520__ $$aWe measure the adsorption height of hydrogen-intercalated quasifreestanding monolayer graphene on the (0001) face of 6H silicon carbide by the normal incidence x-ray standing wave technique. A density functional calculation for the full (63√×63√)−R30° unit cell, based on a van der Waals corrected exchange correlation functional, finds a purely physisorptive adsorption height in excellent agreement with experiments, a very low buckling of the graphene layer, a very homogeneous electron density at the interface, and the lowest known adsorption energy per atom for graphene on any substrate. A structural comparison to other graphenes suggests that hydrogen-intercalated graphene on 6H−SiC(0001) approaches ideal graphene.
000188581 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000188581 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188581 7001_ $$0P:(DE-HGF)0$$aNemec, L.$$b1
000188581 7001_ $$0P:(DE-HGF)0$$aDenig, T.$$b2
000188581 7001_ $$0P:(DE-Juel1)139025$$aStadtmüller, B.$$b3
000188581 7001_ $$0P:(DE-HGF)0$$aLee, T.-L.$$b4
000188581 7001_ $$0P:(DE-Juel1)128774$$aKumpf, C.$$b5
000188581 7001_ $$0P:(DE-Juel1)128790$$aSubach, Sergey$$b6
000188581 7001_ $$0P:(DE-HGF)0$$aStarke, U.$$b7
000188581 7001_ $$0P:(DE-HGF)0$$aRinke, P.$$b8
000188581 7001_ $$0P:(DE-HGF)0$$aBlum, V.$$b9
000188581 7001_ $$0P:(DE-Juel1)167128$$aPosseik, Francois$$b10$$ufzj
000188581 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b11
000188581 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.114.106804$$gVol. 114, no. 10, p. 106804$$n10$$p106804$$tPhysical review letters$$v114$$x1079-7114$$y2015
000188581 8564_ $$uhttps://juser.fz-juelich.de/record/188581/files/FZJ-2015-01932.pdf$$yOpenAccess
000188581 8767_ $$92015-01-08$$d2015-01-13$$eHybrid-OA$$jZahlung erfolgt
000188581 909CO $$ooai:juser.fz-juelich.de:188581$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery$$popenCost
000188581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157982$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000188581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128790$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000188581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b10$$kFZJ
000188581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000188581 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000188581 9130_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vSpin-based and quantum information$$x0
000188581 9141_ $$y2015
000188581 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188581 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188581 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188581 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188581 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188581 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188581 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188581 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000188581 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000188581 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188581 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000188581 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000188581 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000188581 920__ $$lyes
000188581 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000188581 980__ $$ajournal
000188581 980__ $$aVDB
000188581 980__ $$aI:(DE-Juel1)PGI-3-20110106
000188581 980__ $$aAPC
000188581 980__ $$aUNRESTRICTED
000188581 9801_ $$aAPC
000188581 9801_ $$aFullTexts