000188601 001__ 188601 000188601 005__ 20210129215222.0 000188601 037__ $$aFZJ-2015-01943 000188601 1001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b0$$eCorresponding Author 000188601 1112_ $$aDPG Frühjahrstagung$$cBerlin$$d2015-03-16 - 2015-03-20$$wGermany 000188601 245__ $$aQuantum Transport in Core/Shell Semiconductor Nanowires 000188601 260__ $$c2015 000188601 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1427383048_18238$$xInvited 000188601 3367_ $$033$$2EndNote$$aConference Paper 000188601 3367_ $$2DataCite$$aOther 000188601 3367_ $$2ORCID$$aLECTURE_SPEECH 000188601 3367_ $$2DRIVER$$aconferenceObject 000188601 3367_ $$2BibTeX$$aINPROCEEDINGS 000188601 520__ $$aThe transport properties of GaAs/InAs core/shell nanowires is investigated, where the highly conductive InAs shell is wrapped around an insulating GaAs core nanowire. At low temperatures pronounced flxperiodic (h/e) magnetoconductance oscillations are observed, when the magnetic fild is oriented along the nanowire axis. These very regular oscillations are explained by the formation of closed-loop quantumstates in the tube-like InAs shell comprising a flx periodic energy spectrum. The magnetoconductance oscillations are even observed at temperatures as high as 50K. When the GaAs/InAs core/shell nanowire is contacted by two superconducting Nb electrodes the carrier transport is governed by phase-coherent Andreev reflction processes. Here, the observed oscillation period in the magneto-transport corresponds to half a flx quantum (h/2e). 000188601 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000188601 7001_ $$0P:(DE-Juel1)140174$$aHaas, Fabian$$b1 000188601 7001_ $$0P:(DE-Juel1)145960$$aZellekens, Patrick$$b2 000188601 7001_ $$0P:(DE-Juel1)141766$$aRieger, Torsten$$b3 000188601 7001_ $$0P:(DE-HGF)0$$aWenz, Tobias$$b4 000188601 7001_ $$0P:(DE-HGF)0$$aGünel$$b5 000188601 7001_ $$0P:(DE-HGF)0$$aGül$$b6 000188601 7001_ $$0P:(DE-Juel1)125576$$aDemarina, Nataliya$$b7 000188601 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b8 000188601 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b9 000188601 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b10 000188601 773__ $$y2015 000188601 909CO $$ooai:juser.fz-juelich.de:188601$$pVDB 000188601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000188601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140174$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000188601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145960$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000188601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141766$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000188601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156192$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000188601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125576$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000188601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b8$$kFZJ 000188601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b9$$kFZJ 000188601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b10$$kFZJ 000188601 9130_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vFrontiers of charge based Electronics$$x0 000188601 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000188601 9141_ $$y2015 000188601 920__ $$lyes 000188601 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000188601 980__ $$aconf 000188601 980__ $$aVDB 000188601 980__ $$aI:(DE-Juel1)PGI-9-20110106 000188601 980__ $$aUNRESTRICTED