000188717 001__ 188717
000188717 005__ 20210129215235.0
000188717 0247_ $$2doi$$a10.1007/s00330-015-3691-6
000188717 0247_ $$2WOS$$aWOS:000360849200025
000188717 037__ $$aFZJ-2015-02041
000188717 041__ $$aEnglish
000188717 082__ $$a610
000188717 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0
000188717 245__ $$aDual-time-point O-(2-[$^{18}$F]fluoroethyl)-L-tyrosine PET  for grading of cerebral gliomas
000188717 260__ $$aBerlin$$bSpringer$$c2015
000188717 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1442228363_14023
000188717 3367_ $$2DataCite$$aOutput Types/Journal article
000188717 3367_ $$00$$2EndNote$$aJournal Article
000188717 3367_ $$2BibTeX$$aARTICLE
000188717 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188717 3367_ $$2DRIVER$$aarticle
000188717 520__ $$aObjectiveWe aimed to evaluate the diagnostic potential of dual-time-point imaging with positron emission tomography (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) for non-invasive grading of cerebral gliomas compared with a dynamic approach.MethodsThirty-six patients with histologically confirmed cerebral gliomas (21 primary, 15 recurrent; 24 high-grade, 12 low-grade) underwent dynamic PET from 0 to 50 min post-injection (p.i.) of 18F-FET, and additionally from 70 to 90 min p.i. Mean tumour-to-brain ratios (TBRmean) of 18F-FET uptake were determined in early (20–40 min p.i.) and late (70–90 min p.i.) examinations. Time–activity curves (TAC) of the tumours from 0 to 50 min after injection were assigned to different patterns. The diagnostic accuracy of changes of 18F-FET uptake between early and late examinations for tumour grading was compared to that of curve pattern analysis from 0 to 50 min p.i. of 18F-FET.ResultsThe diagnostic accuracy of changes of the TBRmean of 18F-FET PET uptake between early and late examinations for the identification of HGG was 81 % (sensitivity 83 %; specificity 75 %; cutoff - 8 %; p < 0.001), and 83 % for curve pattern analysis (sensitivity 88 %; specificity 75 %; p < 0.001).ConclusionDual-time-point imaging of 18F-FET uptake in gliomas achieves diagnostic accuracy for tumour grading that is similar to the more time-consuming dynamic data acquisition protocol.Key Points• Dual-time-point imaging is equivalent to dynamic FET PET for grading of gliomas.• Dual-time-point imaging is less time consuming than dynamic FET PET.• Costs can be reduced due to higher patient throughput.• Reduced imaging time increases patient comfort and sedation might be avoided.• Quicker image interpretation is possible, as no curve evaluation is necessary.
000188717 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000188717 7001_ $$0P:(DE-Juel1)131768$$aHerzog, Hans$$b1
000188717 7001_ $$0P:(DE-Juel1)131788$$aRota Kops, Elena$$b2
000188717 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b3
000188717 7001_ $$0P:(DE-Juel1)143958$$aJudov, Natalie$$b4
000188717 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b5
000188717 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b6
000188717 7001_ $$0P:(DE-Juel1)131797$$aTellmann, Lutz$$b7
000188717 7001_ $$0P:(DE-HGF)0$$aWeiss, Carolin$$b8
000188717 7001_ $$0P:(DE-HGF)0$$aSabel, Michael$$b9
000188717 7001_ $$0P:(DE-Juel1)131816$$aCoenen, Heinrich Hubert$$b10
000188717 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b11
000188717 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b12$$eCorresponding author
000188717 773__ $$0PERI:(DE-600)1472718-3$$a10.1007/s00330-015-3691-6$$n10$$p3017–3024$$tEuropean radiology$$v25$$x0938-7994$$y2015
000188717 8564_ $$uhttps://juser.fz-juelich.de/record/188717/files/art_10.1007_s00330-015-3691-6.pdf$$yRestricted
000188717 8564_ $$uhttps://juser.fz-juelich.de/record/188717/files/art_10.1007_s00330-015-3691-6.gif?subformat=icon$$xicon$$yRestricted
000188717 8564_ $$uhttps://juser.fz-juelich.de/record/188717/files/art_10.1007_s00330-015-3691-6.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000188717 8564_ $$uhttps://juser.fz-juelich.de/record/188717/files/art_10.1007_s00330-015-3691-6.jpg?subformat=icon-180$$xicon-180$$yRestricted
000188717 8564_ $$uhttps://juser.fz-juelich.de/record/188717/files/art_10.1007_s00330-015-3691-6.jpg?subformat=icon-640$$xicon-640$$yRestricted
000188717 8564_ $$uhttps://juser.fz-juelich.de/record/188717/files/art_10.1007_s00330-015-3691-6.pdf?subformat=pdfa$$xpdfa$$yRestricted
000188717 909CO $$ooai:juser.fz-juelich.de:188717$$pVDB
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131768$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131788$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143958$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131797$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131816$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000188717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000188717 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000188717 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000188717 9141_ $$y2015
000188717 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188717 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR RADIOL : 2013
000188717 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188717 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188717 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188717 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188717 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188717 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000188717 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000188717 920__ $$lyes
000188717 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000188717 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000188717 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2
000188717 980__ $$ajournal
000188717 980__ $$aVDB
000188717 980__ $$aI:(DE-Juel1)INM-3-20090406
000188717 980__ $$aI:(DE-Juel1)INM-4-20090406
000188717 980__ $$aI:(DE-Juel1)INM-5-20090406
000188717 980__ $$aUNRESTRICTED
000188717 981__ $$aI:(DE-Juel1)INM-4-20090406
000188717 981__ $$aI:(DE-Juel1)INM-5-20090406