000188733 001__ 188733
000188733 005__ 20210129215238.0
000188733 0247_ $$2Handle$$a2128/11934
000188733 037__ $$aFZJ-2015-02057
000188733 1001_ $$0P:(DE-HGF)0$$aBücker, H. Martin$$b0
000188733 1112_ $$a14th Workshop on Parallel Processing$$cLessach$$d1995-09-25 - 1995-09-29$$wAustria
000188733 245__ $$aIsoefficiency Analysis of Parallel QMR-Like Iterative Methods and its Implications on Parallel Algorithm Design
000188733 260__ $$aClausthal-Zellerfeld$$bInstitut für Informatik, 1996$$c1996
000188733 29510 $$aWorkshop über Parallelverarbeitung, Lessach (Österreich)
000188733 300__ $$a28-49
000188733 3367_ $$2ORCID$$aCONFERENCE_PAPER
000188733 3367_ $$033$$2EndNote$$aConference Paper
000188733 3367_ $$2BibTeX$$aINPROCEEDINGS
000188733 3367_ $$2DRIVER$$aconferenceObject
000188733 3367_ $$2DataCite$$aOutput Types/Conference Paper
000188733 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1426605119_16390
000188733 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000188733 4900_ $$aInformatik-Bericht$$v96/1
000188733 520__ $$aA specific problem arising out of electrostatics is taken as an example to demonstrate the process of, firstly, transforming a physical problem into a mathematical model and, secondly, its numerical solution by generating a system of linear equations via finite difference approximations. The resulting nonsymmetric sparse linear system is solved by a class of iterative methods that is defined by taking the Quasi-Minimal Residual(QMR) method as a typical member. A performance model called isoefficiency concept is used to analyze the behavior of such methods implemented on parallel distributed memory computers with two-dimensional mesh topology. The isoefficiency concept is employed to compare two different mappings of data to processors as well as to give hints how QMR-like iterative methods should be designed with respect to parallel computing.
000188733 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000188733 8564_ $$uhttps://juser.fz-juelich.de/record/188733/files/ib-9604.pdf$$yOpenAccess
000188733 8564_ $$uhttps://juser.fz-juelich.de/record/188733/files/ib-9604.gif?subformat=icon$$xicon$$yOpenAccess
000188733 8564_ $$uhttps://juser.fz-juelich.de/record/188733/files/ib-9604.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000188733 8564_ $$uhttps://juser.fz-juelich.de/record/188733/files/ib-9604.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000188733 8564_ $$uhttps://juser.fz-juelich.de/record/188733/files/ib-9604.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000188733 909CO $$ooai:juser.fz-juelich.de:188733$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000188733 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000188733 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000188733 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000188733 920__ $$lyes
000188733 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000188733 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000188733 980__ $$acontrib
000188733 980__ $$aVDB
000188733 980__ $$aUNRESTRICTED
000188733 980__ $$acontb
000188733 980__ $$aI:(DE-Juel1)VDB62
000188733 980__ $$aI:(DE-Juel1)JSC-20090406
000188733 9801_ $$aFullTexts
000188733 981__ $$aI:(DE-Juel1)JSC-20090406