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Abstract

A specific problem arising out of electrostatics is taken as an example
to demonstrate the process of, firstly, transforming a physical problem into
a mathematical model and, secondly, its numerical solution by generating a
system of linear equations via finite difference approximations. The resulting
nonsymmetric sparse linear system is solved by a class of iterative methods
that is defined by taking the Quasi-Minimal Residual (QMR) method as a
typical member. A performance model called isoefficiency concept is used
to analyze the behavior of such methods implemented on parallel distributed
memory computers with two-dimensional mesh topology. The isoefficiency
concept is employed to compare two different mappings of data to processors
as well as to give hints how QMR-like iterative methods should be designed
with respect to parallel computing.

1 Introduction

A lot of scientific and engineering problems are solved by making use of numerical
linear algebra algorithms. The solution of systems of linear equations constitutes
one of the basic tools among these algorithms. Nowadays, realistic problems are
becoming increasingly larger and more difficult to solve while at the same time
new parallel hardware architectures along with modern mathematics deliver the
potential of ever higher performances. Unfortunately, traditional algorithms used on
conventional serial machines inevitably do not achieve the same degree of efficiency
on parallel computers. This is the reason for designing new parallel algorithms
offering more separate independent duties that can be treated simultaneously.

The problems to be tackled these days arise from a variety of disciplines. There is
now hardly any area of science and engineering that does not use the computer as a
working instrument. The diversity of problem components as well as their hardness
require an interdisciplinary approach of mathematicians, physicists, computer sci-
entists, and engineers. However, concerted actions of different disciplines are almost
always arduous and troublesome for several reasons, e.g., the desire to maintain the
discipline’s autonomy or their distinct technical jargon. The goal of this paper is to
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bridge the gap between two disciplines: numerical analysis and computer science.
The contents of the first are rarely taught in courses of the second. Computer science
is generally not participating in processing of numerical data.

Finding “answers” to realistic problems often involves at least the development of
computationally feasible models for physical systems, designing algorithms for solv-
ing issues arising in the modeling process, and matching these algorithms to ade-
quate computer architectures. By taking a specific physical problem as an example,
Sect. 2 derives a mathematical model and demonstrates its numerical solution re-
sulting in a system of linear equations with nonsymmetric sparse coefficient matrix.
That part of the paper is intended to address an audience that is not familiar with
elementary numerical methods. Those readers well-informed about discretizing par-
tial differential equations by finite difference approximations can turn directly to
Sect. 3 that presents a class of iterative methods applicable to the system derived in
the previous section. The class is defined by a typical member: the quasi-minimal
residual (QMR) method developed by Freund and Nachtigal [10]. It is shown how
these iterative methods can be implemented on parallel computers with distributed
memory. Two different mappings of data to processors are investigated and com-
munication times on parallel computers with two-dimensional mesh topology are
given for each kind of operation occuring in the iterative methods. Section 4 puts
these communication times into a performance model called isoefficiency analysis
that tries to analyze the scalability of a parallel algorithm implemented on a parallel
architecture, i.e., its ability to achieve performance proportional to the number of
processors. The model can serve helping to design new parallel algorithms which is
shown in Sect. 5.

2  Continuous Problems Solved Discretely

The solution of many problems from science or engineering requires the formulation
of a mathematical model, typically systems of differential equations, either ordinary
or partial. If explicit closed-form solutions are not possible—like in most “real-
world” applications—the numerical solution on digital computers demands replacing
continuous problems by discrete correspondences. The collection of theories, tech-
niques, and tools applicable to such approximations is vast. This section presents a
physical sample problem and its mathematical model. For discretization, a common
technique that can be found in almost any elementary numerical textbook [21, 13]
is used. The result is a system of linear equations with nonsymmetric coefficient
matrix.

Mathematical Model

Consider the task of determining the electric field E produced by a charge density p
in a medium of dielectric permeability €. The theory of electromagnetic fields an-
swers such questions by examining a set of equations called Mazwell’s equations. The
above problem falls into a particular class of the general theory. In this electrostatic
case, it is well-known [17] that there is no interaction between electric and magnetic
phenomena. Thus, by ignoring those of Maxwell’s equations determining magnetic
quantities, the electric field can be computed from only two of these equations in



addition with a third equation describing properties of the medium, namely

curlE =0 | (1)
divD =p , (2)
D =¢E |, (3)

where D denotes the electric displacement. Equation (1) shows that the electric
field E can be expressed in terms of a scalar potential V' satisfying

E = —gradV . (4)

Hence, by eliminating E from the above set of equations, the problem of finding
the electric field is reduced to determining its scalar potential. Inserting (3) and (4)
into (2) yields

—div(egradV) =p ,
and finally, using rules for differential operators leads to

eAV +grade-gradV = —p . (5)

Assume that the domain of the problem is the unit square 0 < z,y < 1 and € and p
are given functions of x and y. Furthermore, suppose Dirichlet boundary conditions,
ie.,

Vz,y) = f(z,y) , (z,y) on boundary , (6)

where f is a given function of x and y.
A schematic illustration of the above two- Y
dimensional problem from electrostatics is
depicted in Fig. 1.

In summary, using Maxwell’s equations (1)
and (2) as well as (3) that describes proper-
ties of the medium, the physical problem is
converted into a mathematical model con-
sisting of a linear partial differential equa-
tion of second order (5) with corresponding
boundary conditions (6).

To avoid multiple subscripts in the
next subsection, we introduce the redundant
symbols a, b, ¢, and d as functions of x 0 1 x
and y. They characterize given aspects of
the dielectric permeability ¢ as well as of
the charge density p and are defined by

Boundary conditionf (x,y)

Figure 1: Electrostatic sample problem

a:=¢, b:=¢, , ci=¢gy , d:=—p,

where the subscripts denote partial derivatives. Thus, the partial differential equa-
tion (5) becomes

a(Vow + Vi) +0Vp+ ¢V, =d . (7)



Discretization

To solve the problem numerically, we use y N

a common approach based on finite differ- ' '
ences. The idea behind finite difference
methods in two dimensions is to approxi-
mate the behavior of a function in a con-
tinuous plane with its behavior on a regu-
larly spaced finite set of points in the plane.
Therefore, a mesh of grid points is im-
posed on the unit square with spacing h be-
tween the points in both the horizontal and
the vertical directions. Two groups of grid
points can be distinguished with respect to
their location in the domain. The first group g 1 x
consists of boundary grid points. These grid
points are on the boundary of the domain,
here, the sides of the unit square. All other grid points fall into the second group
and are called interior grid points. These interior grid points are given by

Figure 2: Mesh of grid points with N = 4

(zi,y;) = (ih, jh) | i,j=1,2,...,N ,

with (N 4+ 1)h = 1 whereas the coordinates of the boundary grid points satisfy
o = yo = 0 and zy1 = yny1 = 1. Figure 2 demonstrates this discretization
for N = 4. Note that this discretization results in N? interior grid points.

At an interior grid point (wx;,y;), the partial derivatives V, V,, V,,, and V,, are
approximated by the centered finite difference approximations

1
V(i yj) = o [V(lﬂlayj) — V(:ci,l,yj)} ;

Vyli, y;) = % [V(%yﬁl) - V(l‘z‘ayj—l)} :
Vi (T3, Y5) = %[V(%H, y;) — 2V (i, y;5) + V(xi—layj)} )
Vi (i, y5) = %[V(%yﬂl) — 2V (2, ;) + V(%yj—l)} 7
where 4,57 = 1,2,...,N. In the sequel, we denote a given function evaluated

at (z;,y;) by subscripts separated by a comma, i.e., we use a; ; rather than a(z;, y;)
and analogously in the context with b, ¢, and d. If we insert the above finite differ-
ence approximations into the differential equation (7), we obtain at all interior grid

points (z;, ;)

Q; 5 Ci i ;5 Cii
<—’J + —J> V(@i, yj41) + ( v —]) V(i yj-1)

h? = 2h h?  2h
CLZ'J' bi,j az’,j bi,j
+ (ﬁ - %) Vi(zio1,y;) + (ﬁ + 5 Vi(wi1,95)
4(1,2‘ i . .o
— hQJV(sz‘,?/j):dm s Z,]:1,2,...,N .
The ezact solution V(x;,y;) of the differential equation must satisfy these relations
in the approximative sense “=" at all interior grid points. We now turn this process
around and use equality “=" in place of approximation “=" hoping to find an



accurate estimate to the exact solution. That means we try to find numbers V; ;
that satisfy the equations

Q5 5 Cij Q; j Ci j
(% + S0) Vi + (2 - 2 vy

h? = 2h h?  2h
+ (% - 2—5) Vi + (53 + Z;—;j) Virig
—4$Jw:@d, ij=12,....N, (8
at all interior grid points and fulfill
Vii=Tlij i,7 on boundary , 9)

at all boundary grid points, where f;; is used to denote the evaluation of f at a
boundary grid point (z;,y;). Then, we can consider the numbers V; ; to be approx-
imations to the exact solution V(x;,y;). Equations (8) relate the approximation at
an interior grid point (z;,y;) to the approximations at its four immediate neighbors
in the north, south, west, and east. This relationship is illustrated in Fig. 3.
Notice the different meaning of subscripts for given functions and the function that
one is looking for by solving the partial differential equation. The subscripts of a
given function, e.g., in f; ;, are used to denote the evaluation of that function at a grid
point, i.e., fi;j := f(x;,y;). On the other hand, the notation V; ; indicates numbers
that satisfy (8) and (9) and that can afterwards be considered to approximate the
exact solution, i.e., V;; = V(x;,y;).

Gij | Cig

h?  2h

(Cﬂi,yjﬂ)

aij b 4a; ; aij | bij

hz  2h p2 Rz 2
o [ ) o
(xi—layj) (xuyj) ($i+1,yj)

Qij  Cij

h2 24

Y ’ (w4, 95-1)

T

Figure 3: Approximation at an interior grid point (z;,y;) is
related to the approximations at its four immediate neighbors
with coefficients according to equations (8)



Matrix-Vector Form

Equations (8) give a system of linear equa- vy
tions in the variables V;;. Some of them,
to be more precise those V; ; at the bound-
ary grid points, are directly given by the
boundary conditions (9). Therefore, (8) re-
duces to a system of N? linear equations
in N? unknowns corresponding to the in-
terior grid points. To write this system in
matrix-vector form, the interior grid points
are numbered in a row-major fashion from
left to right and from bottom to top. Fig-
ure 4 shows this numbering called natural
ordering for N = 4. 0 1 x
In the following, we focus on the interior

grid points alone and change the notation Figure 4: Natural ordering with NV = 4
of their subscripts by using a one-dimensional labeling corresponding to the natural
ordering rather than the two-dimensional labeling that was inspired by grid points
in the plane. Take the variables V;; as an example and keep in mind that the
given functions a; ;, b; ;, ¢; j, d; j, and f; ; are treated similarly. In the above discus-
sion, the values at the interior grid points, e.g., of the bottom row, were denoted
by Vi1, Va1, Va1, ..., Va1, whereas the new one-dimensional labeling refers to them
as Vi, Vo, Vs, ..., V. The latter labeling corresponds to the natural ordering and
will be used in the sequel.

The interior grid points can be partitioned into two groups: Those that are im-
mediately adjacent to at least one boundary grid point, and those that are not
immediately adjacent to any boundary grid points. Consider an interior grid point
that falls into the second group. As Fig. 4 shows, such a point ¢ has four immediate
neighbors in the north, south, west, and east labeled with ¢ + N, i — N, 7 — 1, and
i+ 1, respectively. Hence, equations (8) become

a; & Q; C;
(ﬁ + Qh) View + (h2 - 2h> Vien

a; bz a; bl
+ (ﬁ—ﬁ) Vier + <ﬁ+%>vz+1

4(1,2‘

where 7 is an interior grid point that is not immediately adjacent to any boundary
grid point. Therefore, if we write the linear system in matrix-vector form, the ith
row of the coefficient matrix has five nonzero entries: One entry in the principal
diagonal, two entries each immediately adjacent to the principal diagonal, and two
entries each N positions apart from the principal diagonal.

The equations corresponding to interior grid points falling into the first group, i.e.,
that are immediately adjacent to at least one boundary grid point, look slightly
different from (10). For such interior grid points, those terms of the equations that
are related to boundary grid points can be thought of as constants because these
values are given by the boundary conditions. If we put these constants to the right
hand side, the related terms of the equations vanish on the left hand side. Hence,
the rows of the coefficient matrix corresponding to interior grid points of the first



group have fewer nonzero entries. Take the interior grid point at the bottom left
corner as an example. Since this point is labeled with ¢ = 1, the corresponding
equation determines the first row of the coefficient matrix. The terms related to
Vi_1 and V,_y, i.e., the west and south im- N=4

mediate neighbor, are given by the bound-
ary conditions. For this point, the left hand
side of the equation analogous to (10) only
consists of three terms related to V;i1, Viin, X X X X
and V;. Thus, the first row of the coefficient X Y
matrix has three nonzero entries. Similarly, 2 X X -
the interior grid points that are immediately X < X
adjacent to exactly one boundary grid point X X
produce rows of the coefficient matrix hav- X
ing four nonzero entries.
Using the natural ordering, the matrix- X
vector form of the linear system given by (8)
has a coefficient matrix whose nonzero en- N2 =16
tries are structured according to the sym-
metric pattern depicted in Fig. 5.

X X
X X X
X X X
X X
x

Figure 5: Pattern of nonzeros with N =4

Remark 2.1. Regardless of the size of N, the coefficient matrix of the system de-
fined by (8) has at most five nonzero entries per row. If N is of moderate size,
say N = 102, then the coefficient matrix consists of N? = 10° rows giving approx-
imately 5 - 10° nonzero entries out of N* = 10'? total matrix entries. Therefore,
the coefficient matrix is very large and sparse. The meaning of “large” depends
upon the type of computer that is used for the numerical solution and, moreover,
changes rapidly with the progress of computer technology. The meaning of “sparse”
is somewhat vague too. A common definition is due to Wilkinson who called a ma-
trix “sparse” whenever it is possible to take advantage of the number and location of
its nonzero entries. In this paper, we assume that “sparse” means the usage of an
appropriate storage scheme such that vector and matrix operations can be computed
efficiently. More precisely, given a matrix A € RV *xN* and a vector x € RY”, then
the number of arithmetic multiplications and additions needed to compute Ax is
proportional to 5N? as opposed to N* that a conventional matrix-vector multipli-
cation with a dense matrix would require.

Large sparse matrices arise in a variety of ways besides the numerical solution of
partial differential equations, e.g., in Markov chain models and many-body problems
where the interaction only between nearby particles is taken into consideration.
Therefore, we are not concerned with algorithms specifically-tuned to the symmetric
matrix pattern of Fig. 5. Instead, we use the above discussion as an example showing
the origin of an arbitrary nonsymmetric linear system. The principal concepts of
Sect. 4 where a performance model is presented apply to arbitrary matrix patterns
as well provided that slight modifications are introduced.

Remark 2.2. Although the coefficient matrix derived above has a symmetric pat-
tern, the matrix itself is generally nonsymmetric. Figure 3 schematically shows the
five-point finite difference approximation formula whose coefficients build the ma-
trix rows. The nonsymmetry of these coefficients leads to a nonsymmetric matrix.
Note that in the special case, where b = ¢ = 0 and «a is constant, the coefficients
of the five-point finite difference approximation formula are symmetric resulting in
a symmetric coefficient matrix. Physically speaking, this means that the dielec-
tric permeability € is homogeneous, i.e., grad ¢ = 0, and the problem reduces to a

7



Poisson problem. Note further that the charge density p = —d and the boundary
condition f do not affect the symmetry of the coefficient matrix, in any manner.

Remark 2.3. For the numerical solution of the partial differential equation (7),
centered finite difference approximations that take five grid points into account
are used. Neither it is forbidden to consider more grid points, say nine, nor it is
necessary to deal with finite difference approximations that are centered. Another
topic of finite differences is their error behavior. If we decrease the spacing h between
the grid points, i.e., we increase the number of grid points to obtain a finer grid, do
the numbers V; ; approximate the exact solution V'(x;,y;) more accurately, and if
so at what rate? We refer the reader to the vast literature on finite differences for
answers to not only those questions.

Remark 2.4. In the above discussion, the natural ordering is used to label the in-
terior grid points and to put the linear system into matrix-vector form. There are
many different numbering schemes resulting in permutated coefficient matrices, e.g.,
red-black, multi-colored, diagonal, minimum-degree, and nested dissection ordering,
to name just a few. The principal aim of all orderings is to make the subsequent so-
lution process fast and numerically stable. During a solution process, e.g., Cholesky
factorization, a zero-element may turn into a nonzero. This phenomenon is called
fill-in. Assuming that matrix operations and storage schemes exploit the sparsity
of the coefficient matrix, fill-in increases storage requirements as well as the num-
ber of arithmetic operations. As can be seen from some examples, ordering has an
influence on fill-in. So, in addition to providing numerical stability, another goal
of ordering is to minimize fill-in. Unfortunately, minimizing fill-in is generally an
intractable combinatorial problem [22, 12] such that heuristics have to be used. A
further objective comes along with ordering in the context of parallel processing.
An ordering should maximize the number of independent tasks of the subsequent
solution process. Note that maximizing parallelism and minimizing fill-in usually
are contradictory jobs. The reader is referred to [18, 15] and the references therein
for more details on orderings suitable for parallel processing.

3 Parallel QMR-Like Iterative Methods

There are two broad categories for the solution of systems of linear equations. Di-
rect methods are based on a factorization of the coefficient matrix. A well-known
example is Gaussian elimination. Alternatively, iterative methods compute succes-
sive approximations to obtain more accurate solutions at each step. The wide range
of techniques in the field of iterative methods is surveyed in [1]. This section briefly
states only those issues of iterative methods that are necessary for the performance
model presented in the next section. More precisely, we concentrate on the opera-
tions involved in a special class of iterative methods and show how mapping of data
to processors influences their communication times on distributed memory machines.

QMR-Like Iterative Methods

The quasi-minimal residual method (QMR) developed by Freund and Nachtigal [10]
is an iterative technique that is applicable to the nonsymmetric linear system of the
previous section. Recall that we want to solve

Ax=Db , where A € RV ¥V and X,bE]RN2 )



Note that the coeflicient matrix A is supposed to ¢, ., — 1 9 3. do
be sparse with nonzero elements symmetrically T
patterned as shown in Fig. 5. QMR belongs to

o J,=wlv,

a specific class of iterative methods called Krylov Pn =V, — f:f’i Pn-1
subspace methods [9]. The crucial part of any such Qn =W, — 22%q,
n n €n_q An—

method is the numerically stable computation of -
a basis for the subspace (p, Ap, A’p, ..., A" p), * =0 APx

where A is the coefficient matrix and p is a suit- B = &

able starting vector. During the iterative process, Vi1 = Apn — BpVa
the following operations are performed: scalar

o~ T
) . .. ) W1 = A — B,w
operations, linear combinations of vectors, in- et Gn — P Wa

ner products, and matrix-vector products. QMR ®  Pn+1 = Vit ll
whose main loop is given in Fig. 6 consists solely o &,,1 = [[W,1|2
of operations of the above kind where all inner g — _bnt1
products are marked with a bullet in front of " c”—ll‘ﬁ"‘

the corresponding assignment. Note that the Fu- Cn = 102
clidean norm of a vector z is defined by ||z||s = o = —1 ek
VzTz such that a BEuclidean norm is an inner " " B
product followed by a scalar operation. In order d, = 0uPn + (Vn-160)?dny
to hide the mathematical background, we refer to X, = X,_1 +d,
methods that exclusively use scalar operations, Vo= L5
linear combinations, inner products, and matrix- e p"? :LH
vector products as QMR-like iterative methods. Wntl = g 7 Wntl

We assume that the main loop of such a method endfor

consists of a constant number of these operations,

i.e., methods like GMRES [20] whose number of Figure 6: QMR; cf. Alg. 7.1 of [11]
inner products grows linearly with respect to the number of iteration steps are not
considered here. Exploiting the sparsity of the coefficient matrix while calculating a
matrix-vector product, cf. Remark 2.1, the execution time of the fastest known se-
quential algorithm to perform a single iteration step of a QMR-like iterative method
is then linear with respect to the number of vector components

Tieq = cN?t, (11)

where ¢ is a constant and %, is the time required to perform an arithmetic operation
on a given serial computer.

For the isoefficiency analysis carried out in the next section, it is necessary to deter-
mine an overhead. The purpose of the rest of this section is to derive communication
times for each of the above four kinds of operations that are responsible for the over-

head.

Remark 3.1. The symmetric pattern of the coefficient matrix implies that the
operations Az and A7z can be treated identically when deriving communication
times for matrix-vector products. We therefore focus on the operation Az. For
nonsymmetric patterns, a discussion of the operation ATz would easily generalize
the concepts presented here.

Usually, iterative methods are combined with a suitable preconditioning technique
to speed up convergence and to improve numerical stability. We will not discuss
such techniques; those preconditioning techniques that themselves are limited to
the above four kinds of operations are contained in our discussion.



Parallel Computation of Scalar Operations and Linear Combinations

We suppose throughout the paper that there is an integer p such that p divides N?2.
Then, we decompose the vector space RY* as the Cartesian product of p lower-
dimensional subspaces RY"/7. Any vector z € RV * is decomposed as

z= | | erRY , where z; e RV'/?, i=1.2,....p,

Zp

is called a block-component of the vector z. If p denotes the number of processors
in a parallel computing environment with distributed memory, we assign the block-
component z; to the ith processor. On the assumption that scalars are stored at
each processor, scalar operations and linear combinations of vectors are computed
locally, i.e., the communication times of these operations satisfy

Tscal oper __ Tlin comb -0 . (12)

comm comim

Remark 3.2. The assumption that the order of the matrix N? is divisible by the
number of processors p does not tend to restrict the numerical analyst in choosing
his discretization in real applications at all. The number of grid points in one
dimension N—and hence, the matrix order N?—is typically very large in comparison
to the number of processors available in today’s parallel computing systems, i.e.,
N? > p. Therefore, if p does not divide N? the entire work to be done in RY ’
is generally dominated by the work of p processors each handling a subspace of
dimension N2 div p. The remaining work due to a subspace of dimension N2 mod p
is negligible or can be suitably managed under load balancing considerations.

Parallel Computation of Inner Products

Assume that two vectors, y and z, are distributed over p processors in the way just
described. The inner product of these vectors is determined by

p
T AT~
y ZZE Y Zi
i=1

and can be computed in two phases. The first phase of the parallel computation
of an inner product is executed by all processors i = 1,2,...,p simultaneously
without communication. In this phase, a processor 7 calculates the inner product
of the block-component y7z;. In the second phase, these p partial results have
to be added by a global sum operation involving communication. Conceptually,
the communication pattern used in the second phase of the evaluation of an inner
product is known as a reduction. A reduction starts with a different value on each
processor, here y!z;, and ends with a single value on each processor that is the result
of applying any associative operation, here addition, on all the starting values. Thus,
determining the communication time of an inner product is equivalent to finding the
communication time of reducing the values y; z;.

Due to its global structure, a reduction involves communication times that strongly
depend upon the way how processors are interconnected. Unless otherwise stated,
we assume a two-dimensional mesh of ,/p processors in both dimensions with wrap-
around connections. Furthermore, it is assumed that a processor can send data on

10



only one of its ports at a time. Receiving data is only permitted on one port at a time
as well. However, a processor can send and receive data simultaneously—either on
the same port or on separate ports. Let us further assume that cut-through routing
is used. In this routing scheme, the time to completely transfer a message of length [
between two processors that are d connections away is given by t + lty, + (d — 1)ty,
where tg, t.,, and t;, are defined as follows. The startup time t; is the time required to
initiate a message transfer at the sending processor. This time occurs only once for
every single message. The per-word time ¢, is the time each word takes to traverse
two directly-connected processors, i.e., ty, is equal to 1/b where b is the bandwidth
of the communication channel. (It is supposed that an element of R requires one
word of storage such that [ corresponds to the number of elements of R that are
transferred.) Finally, the per-hop time ¢, is the time needed by the header of a
message to travel between two directly-connected processors.

Under the above scenario, it is known [18] that the communication time of reducing
messages each containing [ words is

Toomm = 2|(ts + 1) logp + 2t (P = 1) | (13)

where the reduction is supposed to be performed in two phases as follows. Note
that in the computation of an inner product, the messages to be reduced consist
of a single word, namely yz;, such that [ = 1. In the first phase called single-
node accumulation, the values y77; stored as partial results at every processor are
combined through addition, and accumulated at a single destination processor. The
second phase consists of reversing the directions and sequence of messages sending
the final result y’z from this single processor to all other processors. The second
phase is known as a single-node broadcast. To simplify the below discussion, we use

Tcg;;ggmd ~ 2| (ts + tw) logp + 2th/p ] (14)

as an approximation of the communication time of an inner product hereafter.

Remark 3.3. Equation (14) serves as an input to the isoefficiency analysis of the
next section. Although the discussion in this paper is confined to the special archi-
tecture described above, the isoefficiency analysis is easily adopted to other kinds of
parallel architectures by considering corresponding communication times. For ex-
ample, Gupta et al. [14] analyze the hypercube by using 7,22 Prod = 2t ]og p instead
of (14) and the fat-tree by simply ignoring any communication times incurred by
inner products. Their work—Ilike our discussion—assumes that reduction is per-
formed by a single-node accumulation followed by a single node broadcast. But,
hypercube algorithms for basic communication operations have been extensively in-
vestigated [7, 19] and it is known [18] that there is a faster way to perform reduction
on a hypercube. Accustomizing the communication pattern of an all-to-all broad-
cast, the communication time of a reduction can be improved by a factor of two.
Note that there is an even faster method useful for long messages to be reduced
that is based on splitting messages into smaller parts; see [2] for details. Finally, we
remark that for a two-dimensional mesh, the communication times of basic commu-
nication operations increase at most by a factor of four in the absence of wraparound
connections [18].
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Parallel Computation of Matrix-Vector Products

In this subsection, data is considered to be
distributed over processors in two different
ways. For both of these distributions, com-
munication times of matrix-vector products
are derived. The different results are used in
the next section in order to compare these
two distributions with respect to their effect
on a certain model of parallel QMR-like it-

erative methOde' . Figure 7: Simple stripe partitioning. A pro-
The first mapping of data to processors is cessor exchanges messages of length NV to two

fairly straightforward and easy to imple- neighbors.

ment. The coefficient matrix with its rows numbered from 1 to N? is partitioned
among the processors as shown in Fig. 7. If we refer to N?/p subsequent rows as
stripes the matrix consists of p stripes that are stored at consecutive processors.
So, the ith processor stores the nonzero elements of the ith stripe, i.e., processor P;
holds data of matrix rows numbered from (i — 1) N?/p + 1 to i N?/p. All vectors
are distributed correspondingly. Note that the distribution of vectors in this parti-
tioning scheme is exactly the one described above. We refer to this distribution of
matrix and vectors as simple stripe partitioning.

If techniques that exploit the sparsity of the matrix are used, the communication
time of a matrix-vector product depends on the structure of the matrix. Here, the
structure of the matrix is such that while multiplying it with a vector, the ith com-
ponent of the vector has to be multiplied with matrix elements of rows numbered
1,7+ 1,7 — 1,7+ N, and ¢« — N. Thus, each component of the vector is required
at locations that are at a distance of 1 and N on either side. The data transfer
to perform a matrix-vector product depends upon the number of vector compo-
nents each processor is storing. If we assume that the number of vector components
per processor, N?/p, is greater than or equal to the maximal distance that data
has to travel during a matrix-vector product, N, then the required communication
is accomplished by directly-connected processors. Thus, if N > p, a processor P;
communicates with P;,_; and P;,; while performing a matrix-vector product. A com-
munication step consists of exchanging N vector components at the boundaries of
each processor. The communication time spent in a matrix-vector product therefore
is

Tmatvee = 2t + Nty + tn) if simple stripe partitioning . (15)
Note that the assumption N > p is usually justified in parallel processing applica-
tions; cf. Remark 3.2.

Compared to the first partitioning scheme presented above, the second mapping of
data to processors is less comprehensive and more difficult to implement. In contrast
to the first partitioning scheme where the communication time of a matrix-vector
product is simply derived by analyzing the mapping of matrix rows to processors,
the second partitioning scheme is more easily investigated by considering the distri-
bution of grid points to processors. We present both representations of the second
partitioning scheme in Fig. 8. The top of this figure shows the partitioning of matrix
rows, whereas the partitioning of grid points is depicted on the bottom.

As in simple stripe partitioning, each processor here is storing the nonzero elements
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of N?/p matrix rows. But they are not sub- A < b
sequently numbered throughout a processor. '

| N/Y/P rows 1
The N? rows of the coefficient matrix are ||\ N | N
packaged into N,/p stripes each consisting NN | e
of N/,/p consecutive matrix rows. These N°| |- NN\ - i:lf
stripes are cyclically distributed over /p |\ ] B ’%’
subsequent processors each. To see where :
this partitioning scheme stems from, con- L N_ NN | N

sider the finite difference grid and recall that
each interior grid point exactly contributes

one matrix row. If each processor stores % grid points

a square subsection of N/,/p interior grid
points in both dimensions this partitioning
of grid points corresponds to the partition-
ing of matrix rows just described. The vec-
tor components are mapped to processors
such that a processor stores the ¢th compo-
nent only if the ith matrix row is stored at
this processor. We refer to this scheme as
cyclic stripe partitioning.

Note that in simple stripe partitioning as
well as in cyclic stripe partitioning, each
processor stores N2 /p matrix rows and the N grid points

corresponding vector components. The two Figure 8: Cyclic stripe partitioning in terms
schemes differ in which rows a processor is °f matrix rows (top) and grid points (bot-
. . tom). A processor exchanges messages of
storing. But this difference does not affect length N/\/p to four neighbors.

the above communication times derived for

linear combinations and inner products, i.e., (12) and (14) hold for both partitioning
schemes.

The representation in terms of the finite difference grid can be used to derive the
communication time of a matrix-vector product using cyclic stripe partitioning.
A processor P; that is not located at the grid boundary needs to exchange data
with each of his four directly-connected neighboring processors Py 5, Pi 5, Pi-1,
and P;.;. Processors located at the grid boundary communicate with less than
four neighboring processors. Each data transfer consists of exchanging N/,/p vector
components. Hence, the communication time to perform a matrix-vector product is

Tmat—vec _4 t —|—£t _'_t 1f 1 t . tt . 1
= s wttn] , cyclic stripe partitioning . (16)

comim \/Z_)
4 Isoefficiency Analysis

This section presents a concept modeling the scalability of a parallel algorithm on a
parallel computer. The concept is used to analyze a single iteration step of a parallel
QMR-like iterative method.

Isoefficiency Concept

Ignoring problems arising from the introduction of hierarchical caches, sequential
algorithms traditionally are evaluated in terms of their execution times. The se-
quential execution time is usually expressed as a function of a free variable called
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problem size. In this paper, we are concerned with QMR-like iterative methods.
Since it is not known in advance how many iteration steps a method needs to con-
verge, we do not consider the whole algorithm until its termination but consider a
single iteration step and take N, the number of grid points in one dimension, as
the problem size. As mentioned in the previous section, the execution time of the
fastest known sequential algorithm to perform a single QMR-like iteration is

To(N) = cN?t, = O(N?) | (17)

where c is a constant and ¢, is the time required to perform an arithmetic operation®.
Things are more difficult in the context with parallel computing. The execution time
of a parallel algorithm 7},,, depends not only on the problem size N but also on the
number of processors p and the particular architecture on which it is implemented.
Kumar et al. [18] have introduced an isoefficiency concept relating the execution
time of the fastest known sequential algorithm to the number of processors needed
to maintain a fixed efficiency while taking into account both, parallel algorithm and
architecture. The goal is to evaluate the scalability of a parallel algorithm on an
architecture, i.e., its ability to achieve performance proportional to the number of
Processors.

For the motivation of the isoefficiency concept, we briefly state the conventional
definitions of speedup and efficiency. The speedup S is defined as the ratio of the
time to solve a problem on a single processor using the fastest known sequential
algorithm to the time required to solve the same problem on a parallel computer,
S = Tieq/Tpar- The efficiency E is defined as the ratio of the speedup to the number
of processors, £ = S/p. The optimal speedup is equal to p and the corresponding
efficiency is equal to one. The isoefficiency concept is motivated by the following
two observations:

e With a fixed problem size—and thus, with a fixed execution time of the fastest
known sequential algorithm—the speedup does not increase with increasing
number of processors but tends to saturate. Hence, efficiency decreases.

e With a fixed number of processors, the speedup increases by executing the
algorithm on larger problems, i.e., by increasing the problem size and T
respectively. Thus, efficiency increases.

Therefore, one can expect to keep efficiency constant by allowing T, to grow prop-
erly with increasing number of processors. The rate at which 7., has to be increased
with respect to the number of processors to maintain a fixed efficiency can serve as
a measure of scalability.

Algorithm implementations on real parallel computers do not achieve optimal speed-
up. For example, data communication delays and synchronization are reasons for
nonoptimal speedup. All causes of dropping the theoretically ideal speedup are
called overhead and the total overhead function is formally defined as

Tover<N7 p) = prar<N7 p) - Tseq<N) )

i.e., that part of the total time spent in solving a problem summed over all proces-
sors pTpa that is not incurred by the fastest known sequential algorithm Tg.,. So,

*The notation f(N) = ©(g(NN)) is used to denote the fact that the function g is an asymptot-
ically tight (upper and lower) bound for the function f. More formally, a function f(N) belongs
to the set @(g(N )) if there exists positive constants cj,ce, and Ny such that the inequalities
c1|lg(N)| < |f(N)] < e2|g(N)| hold for all N > Ny.
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the efficiency can be expressed as a function of the total overhead and the execution
time of the fastest known sequential algorithm

S Tu(N)  Teg(N) 1

E = — = e = .
P prar<N7 p) Tseq<N) + Tover<N7 p) 1 + Tover<N7 p)/crseq<N)

(18)

Given Tiyver as well as Tieq, this equation determines the efficiency of a parallel algo-
rithm on an architecture for a chosen problem size N and a number of processors p.
But this equation can be interpreted in another way. For fixed Ty, and N respec-
tively, efficiency decreases with increasing p because Ty, usually increases with p.
Keeping p fixed and provided that Tiye, grows slower than ©(7), the efficiency in-
creases with increasing Ty, and NN respectively. Thus, efficiency can be maintained
at a desired value if p and Ty, are both increased appropriately. If such behavior
is possible, i.e., the ratio Tyver/Tseq remains fixed, the combination of an algorithm
and the parallel architecture on which it is implemented is called a scalable parallel
system.

The rate with respect to p at which Tiq has to be increased to keep efficiency
constant is used to asses the quality of a scalable parallel system. For example,
if Tieq has to be increased as an exponential function of p to maintain efficiency
fixed, the system is poorly scalable. A system is highly scalable if one only has
to linearly increase Tgq with respect to p. Such growth rates can be calculated
from (18) or equivalently from

E
Tseq(N) = 1_E Tover(N> p) ) (19)
where FE is the desired efficiency to be maintained. Rather than deriving a growth
rate of Tieq with respect to p yielding an isoefficiency function [18], we are concerned
with analyzing how the problem size N has to be increased with respect to p to keep
the efficiency from dropping. The task is therefore to solve (19) for N as a closed
function of p.

Isoefficiency Analysis of a Single QMR-Like Iteration Step

We carry out the isoefficiency analysis for a single QMR-like iteration step. To
calculate growth rates from (19), we need to know Ti.q and Tiye, of a single QMR-
like iteration step. The execution time of the fastest known sequential algorithm
is given by (17). The total overhead is solely due to communication times, i.e.,
Tover = D Teomm- Since (12) shows that scalar operations and linear combinations of
vectors incur no communication times, the total overhead is of the form

Tover = P Tcior;lrgr()d +mp Tcgllflfl_lvec ) (20)
where it is assumed that s inner products and m matrix-vector products are com-
puted in a single QMR-like iteration step. Notice that for the algorithm given in
Fig. 6, the relations s = 4 and m = 2 hold.
The last section introduced two different mappings of data to processors, simple
stripe partitioning and cyclic stripe partitioning. These two schemes are now com-
pared using an isoefficiency analysis. For both schemes, the communication time of
an inner product is given by (14). The communication time of a matrix-vector prod-
uct is different in each of the two partitioning schemes according to (15) and (16).
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Inserting (14)—(16) into (20) and grouping terms of different orders of magnitude
with respect to p yields

(2mity Np + 2m(ts + tn)p + 25(ts + ty)plogp + dstyp®/?
if simple stripe partitioning |,
Tover = (21)
Amt N /D + Am(ts + ty)p + 25(ts + tw)plog p + 4styp®/?
if cyclic stripe partitioning .

\

Since (21) shows that, for fixed p, the total overhead function Tiye grows slower
than O(Ti,) = O(N?), a single QMR-like iteration step implemented on a two-
dimensional mesh is a scalable parallel system. Therefore, it is possible to calculate
growth rates for fixed efficiency from (19) by inserting (17) and (21). It is not hard
to solve (19) for N as a closed function of p. The task is just to solve a quadratic
equation with respect to N. However, we will apply a different technique that easily
shows the asymptotic growth rate and that is applicable to more complex isoeffi-
ciency analyses as well. If the overhead function consists of multiple additive terms,
we solve (19) for N considering each term of the overhead function individually.
The term of the overhead function that requires N to grow at the highest rate with
respect to p determines the overall asymptotic behavior of the parallel system.

We illustrate this technique for each of the two data mappings beginning with simple
stripe partitioning. Using only the first term of (21), we need to solve

E
CN2 ta = ﬁ 2thNp

for N and get

2mit F

szp:@(p) .

Considering all remaining terms of (21), the task is to solve

E
cN*t, = 1 & [Qm(ts + t0)p + 25(ts + ty)plogp + 4st,p®/?
for N. Since none of the terms on the right hand side depends on N the asymptotic
rate is determined by the last term that has the highest order of magnitude with
respect to p. Hence,

Asth B
N = ,/—227 3/t —9o(p3/4) . 292
g P =ew (22)

To keep the efficiency fixed at a value E, the problem size N has to grow as O(p)
considering only the first term of the overhead function and as ©(p*/*) examining
all remaining terms. The asymptotically higher of the two rates is responsible for
the overall asymptotic behavior N = ©(p).

For cyclic stripe partitioning, the consideration of only the first term of the overhead
function gives

E
CN2 ta = ﬁ 4thN\/]_9
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which leads to
dmt F

N:m\/ﬁ:(%(\/@-

Using all remaining terms yields the same result as in (22) that gives the overall
asymptotic behavior for cyclic stripe partitioning. To summarize the above analysis
for both mappings of data to processors, the problem size has to be increased as

2mt E
Bl P = O(p) if simple stripe partitioning |,
cta(l1—F)
N = B (23)
t
ﬁ Pt = 0@p¥) if cyclic stripe partitioning

to maintain the efficiency fixed at a desired value E. If we compare the two differ-
ent mappings of data to processors in the isoefficiency concept, we conclude that
cyclic stripe partitioning is superior to simple stripe partitioning. To keep the effi-
ciency fixed, the number of grid points in one dimension N only has to be increased
as O(p**) using cyclic stripe partitioning whereas it takes a higher growth rate
of ©(p) implementing simple stripe partitioning. Thus, cyclic stripe partitioning is
asymptotically more scalable.

Remark 4.1. In this paper, we calculate growth rates of the problem size N re-
quired to keep the efficiency fixed as the number of processors p increases. Since
the execution time of the fastest known algorithm 7., is a function of the problem
size N, it is possible to perform an isoefficiency analysis with respect to T, instead
of N. The growth rate of Ti., required to keep efficiency constant as p increases
is called isoefficiency function. Using (17) the isoefficiency function corresponding
to (23) is given by

1 /2mt, E\>
cty ( 1m oy ) P’ = 0@ if simple stripe partitioning |,
Tseq = 4 z E (24)
ls—hE p3/2 = @(ps/z) if cyclic stripe partitioning .

Unfortunately, Kumar et al. [18] refer to Tiq as the “problem size”. Since this
terminology may lead to confusions with the conventional definition of problem size
as a free parameter of the input size, we avoid their terminology.

5 Implications on Parallel Algorithm Design

The aim of the isoefficiency analysis given in the last section is to provide insight
in the general behavior of parallel QMR-like iterative methods, not to give detailed
performance predictions with high accuracy. It is therefore justified to consider
asymptotic growth rates. In this section, it is examined how the isoefficiency analysis
helps in designing improved parallel algorithms.

Minimizing communication times

Two different mappings of data to processors are compared above within the isoef-
ficiency concept. Here, we focus on cyclic stripe partitioning that is asymptotically
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more scalable than simple stripe partitioning. To maintain efficiency at a desired
value F, (23) reveals that the number of grid points in one dimension N has to be
increased as ©(p**) with leading coefficient of the highest-order term

4$thE
ct,(1—F)

In this expression, t, and ¢, are given hardware parameters of the parallel architec-
ture, the time required to perform an arithmetic operation and the per-hop time
respectively. The constant ¢ is defined in (11) by the fastest known sequential al-
gorithm to perform a single iteration step and cannot be tuned either. The only
parameter that can serve to decrease the leading coefficient from the parallel algo-
rithm designer’s point of view is s, the number of inner products calculated in a
single iteration step. Since one cannot expect to save any inner product in a paral-
lel algorithm compared to a serial method, the straightforward idea is to minimize
communication times due to inner products.

Suppose that all s inner products of a single iteration step are independent of each
other. Note that this assumption is generally not true. For example, there are
only two independent inner products out of s = 4 in the QMR method depicted
in Fig. 6. The computation of p,,; is independent from the calculation of &,.
But computing €, depends via p, and q, on the value of §,. The question is
whether the isoefficiency analysis shows an advantage if all s inner products are
independent. In this case, all s inner products can be computed simultaneously as
follows. The s inner products of the block-components are computed first without
any communication. These values are globally added by a vector reduction meaning
that the vector formed by these s values is reduced componentwise. This procedure
is implemented by a single (vector) operation using the communication pattern of a
(scalar) reduction with messages of length s. Hence, the expression to subsequently
calculate s inner products that was used in the last section, namely

STt = 25 (1, + 1) logp + 2117 |

can be replaced by

2[(ts + stw)logpmth@} , (25)

where (13) with | = s as well as the corresponding approximation leading to (14)
are used. Inserting (25) into the overhead function (20) instead of s7,m1Prod and
carrying out an isoefficiency analysis yields

4t E
N=,/—2" 34
\/ ctai—E) ¥

So, the result with independent inner products demonstrates the same growth
rate ©(p**) as with dependent inner products. But the leading coefficient of the
highest-order term is decreased by a factor of \/s. In the isoefficiency concept, it is
therefore advantageous to design parallel QMR-like iterative methods such that all
inner products are independent.

A further result of the isoefficiency analysis is the following. The leading coefficient
of the highest-order term does not depend on m, the number of matrix-vector prod-
ucts in a single iteration step. Consequently, reducing communication times due to
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matrix-vector products does not significantly help to improve scalability of parallel
QMR-like iterative methods on two-dimensional mesh-based computers. Although
highly-efficient implementations should consider this aspect too, it is more promising
to think about making all inner products independent.

Remark 5.1. In this section, we concentrate on cyclic stripe partitioning because it
is asymptotically more scalable than simple stripe partitioning. But let us consider
simple stripe partitioning in this remark. Reflecting the result of simple stripe
partitioning in (23) and transferring m a similar role as s plays above, one might
wonder that the leading coefficient of the highest-order term can be decreased by
reducing communication times of matrix-vector products. But this is not true. If
we suppose m independent matrix-vector products we can replace

2m(ts + Nty + ty)
used in the analysis given in the last section by
2(ts + mNty +ty) -

Repeating the isoefficiency analysis with this expression used in the overhead func-
tion (20) rather than mT,2atvee yields exactly the same result as in (23). Moreover,
if we additionally assume that a single iteration step consists of s independent inner
products the outcome of a corresponding isoefficiency analysis does not change ei-
ther. So, simple stripe partitioning is not only asymptotically poor but it cannot be
significantly improved by the independence of neither matrix-vector products nor

inner products. Note that load balancing considerations are not considered in this
paper.

Remark 5.2. Another way of improving parallel QMR-like iterative methods is
trying to overlap all communication times with useful computation. This is usu-
ally managed by restructuring stable serial algorithms that is often more simpler
than designing satisfactorily fast and stable parallel algorithms. Overlapping is not
addressed here; see [8] and the references therein for details.

Remark 5.3. This paper models a single iteration step of parallel QMR-like iter-
ative methods using the isoefficiency concept. Having fixed the main ideas of this
paper, the report of Gupta et al. [14] came to the author’s knowledge. The report
carries out an isoefficiency analysis of the conjugate gradient method [16] for the
solution of symmetric positive definite systems of linear equations. The conjugate
gradient method falls into the class of those iterative methods that are investigated
in this paper. For parallel computers with two-dimensional mesh topology and cyclic
stripe partitioning, the report [14] derives the same asymptotic behavior. In con-
trast to this paper, the report [14] does not contain an analysis for simple stripe
partitioning but it does consider truncated incomplete Cholesky preconditioning as
well as other parallel computer architectures; cf. Remark 3.3.

Another model of parallel iterative methods is proposed in [4, 5, 6]. This work
examines the running time of a single iteration step on parallel two-dimensional
mesh-based computers. It is more general than the isoefficiency analysis given here
and in [14] in the sense that it allows modeling of methods whose number of arith-
metic operations in one iteration step is not constant, e.g., GMRES [20] is analyzed.
Furthermore, overlapping communication with computation is permitted. But it
does not take into account any communication times during a matrix-vector prod-
uct. The overhead due to this kind of operation is simply ignored.
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Both models are not intended to give accurate performance predictions; but they
both show that the performance of parallel QMR-like iterative methods is severely
influenced by the computation of inner products for a large number of processors.
So, it is worthwhile designing algorithms where inner products can be calculated
independently. For QMR, this is done in [3].

6 Summary

An electrostatic problem mathematically described by a linear partial differential
equation of second order with Dirichlet boundary conditions is discretized using
centered finite difference approximations. The resulting system of linear equations
is put into matrix-vector form by natural ordering of the unknowns. For the solution
of this linear system with nonsymmetric coefficient matrix, a class of iterative meth-
ods is analyzed that is defined by exclusively consisting of the following four kinds
of operations: scalar operations, linear combinations of vectors, inner products, and
matrix-vector products. The communication times for each of these four kinds of
operations are derived on a parallel computer with two-dimensional mesh topology.
Two different mappings of data to processors are compared by putting these commu-
nication times into the isoefficiency concept that tries to model scalability aspects.
Out of these two mappings, the strategy distributing matrix rows cyclically to pro-
cessors is shown to be the asymptotically more scalable one. Using this mapping
strategy, performance can be improved by designing parallel algorithms such that
all inner products are independent.
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