000188736 001__ 188736
000188736 005__ 20210129215238.0
000188736 020__ $$a978-3826518263
000188736 0247_ $$2GVK$$aGVK:216749549
000188736 037__ $$aFZJ-2015-02060
000188736 041__ $$aGerman
000188736 1001_ $$0P:(DE-HGF)0$$aBücker, H. Martin$$b0$$eCorresponding Author
000188736 1112_ $$a4. Workshop über Wissenschaftliches Rechnen$$cBraunschweig$$d1996-10-09 - 1996-10-11$$wGermany
000188736 245__ $$aPerformance of three Krylov subspace methods on a Paragon system
000188736 250__ $$aAls Ms. gedr
000188736 260__ $$aAachen$$bShaker$$c1996
000188736 29510 $$aParalleles und verteiltes Rechnen, Beiträge zum 4. Workshop über Wissenschaftliches Rechnen, TU Braunschweig, 1996
000188736 300__ $$a29-38
000188736 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1426606510_16970
000188736 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000188736 3367_ $$033$$2EndNote$$aConference Paper
000188736 3367_ $$2ORCID$$aCONFERENCE_PAPER
000188736 3367_ $$2DataCite$$aOutput Types/Conference Paper
000188736 3367_ $$2DRIVER$$aconferenceObject
000188736 3367_ $$2BibTeX$$aINPROCEEDINGS
000188736 4900_ $$aBerichte aus der Informatik
000188736 520__ $$aFor the solution of a system of linear equations with general non-Hermitian nonsingular coefficient matrix, three Krylov subspace methods, CGS, TFQMR and QMR, are applicable offering the advantage that the coefficient matrix is solely involved in the form of matrix-vector products. If the coefficient matrix is sparse these iterative methods are attractive in contrast to direct methods, provided that they converge sufficiently fast. In this note, the performance of the three methods is investigated on an Intel PARAGON XP/S 10, a parallel machine with distributed memory.
000188736 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000188736 588__ $$aDataset connected to GVK
000188736 650_7 $$2gnd$$aWissenschaftliches Rechnen
000188736 650_7 $$2gnd$$aParallelverarbeitung
000188736 8564_ $$uhttp://d-nb.info/948820993/04
000188736 909CO $$ooai:juser.fz-juelich.de:188736$$pVDB
000188736 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000188736 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000188736 920__ $$lyes
000188736 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000188736 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000188736 980__ $$acontrib
000188736 980__ $$aVDB
000188736 980__ $$acontb
000188736 980__ $$aI:(DE-Juel1)VDB62
000188736 980__ $$aI:(DE-Juel1)JSC-20090406
000188736 980__ $$aUNRESTRICTED
000188736 981__ $$aI:(DE-Juel1)JSC-20090406