000188772 001__ 188772
000188772 005__ 20240619091131.0
000188772 0247_ $$2doi$$a10.1002/biot.201400609
000188772 0247_ $$2ISSN$$a1860-6768
000188772 0247_ $$2ISSN$$a1860-7314
000188772 0247_ $$2WOS$$aWOS:000350104700014
000188772 0247_ $$2altmetric$$aaltmetric:2986853
000188772 0247_ $$2pmid$$apmid:25512037
000188772 037__ $$aFZJ-2015-02091
000188772 082__ $$a570
000188772 1001_ $$0P:(DE-Juel1)156416$$aAlbers, Jonas$$b0
000188772 245__ $$aEngineering connectivity by multiscale micropatterning of individual populations of neurons
000188772 260__ $$aWeinheim$$bWiley-VCH$$c2015
000188772 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1426684053_15685
000188772 3367_ $$2DataCite$$aOutput Types/Journal article
000188772 3367_ $$00$$2EndNote$$aJournal Article
000188772 3367_ $$2BibTeX$$aARTICLE
000188772 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188772 3367_ $$2DRIVER$$aarticle
000188772 520__ $$aFunctional networks are the basis of information processing in the central nervous system. Essential for their formation are guided neuronal growth as well as controlled connectivity and information flow. The basis of neuronal development is generated by guiding cues and geometric constraints. To investigate the neuronal growth and connectivity of adjacent neuronal networks, two-dimensional protein patterns were created. A mixture of poly-L-lysine and laminin was transferred onto a silanized glass surface by microcontact printing. The structures were populated with dissociated primary cortical embryonic rat neurons. Triangular structures with diverse opening angles, height, and design were chosen as two-dimensional structures to allow network formation with constricted gateways. Neuronal development was observed by immunohistochemistry to pursue the influence of the chosen structures on the neuronal outgrowth. Neurons were stained for MAP2, while poly-L-lysine was FITC labeled. With this study we present an easy-to-use technique to engineer two-dimensional networks in vitro with defined gateways. The presented micropatterning method is used to generate daisy-chained neuronal networks with predefined connectivity. Signal propagation among geometrically constrained networks can easily be monitored by calcium-sensitive dyes, providing insights into network communication in vitro.
000188772 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000188772 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188772 7001_ $$0P:(DE-Juel1)156456$$aToma, Koji$$b1
000188772 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b2$$eCorresponding Author
000188772 773__ $$0PERI:(DE-600)2214038-4$$a10.1002/biot.201400609$$gVol. 10, no. 2, p. 332 - 338$$n2$$p332 - 338$$tBiotechnology journal$$v10$$x1860-6768$$y2015
000188772 909CO $$ooai:juser.fz-juelich.de:188772$$pVDB
000188772 9141_ $$y2015
000188772 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188772 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188772 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188772 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188772 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188772 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188772 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000188772 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000188772 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000188772 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156416$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000188772 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156456$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188772 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000188772 9130_ $$0G:(DE-HGF)POF2-453$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vPhysics of the Cell$$x0
000188772 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000188772 920__ $$lyes
000188772 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000188772 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x1
000188772 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000188772 980__ $$ajournal
000188772 980__ $$aVDB
000188772 980__ $$aI:(DE-Juel1)ICS-8-20110106
000188772 980__ $$aI:(DE-Juel1)PGI-8-20110106
000188772 980__ $$aI:(DE-82)080009_20140620
000188772 980__ $$aUNRESTRICTED
000188772 981__ $$aI:(DE-Juel1)IBI-3-20200312
000188772 981__ $$aI:(DE-Juel1)PGI-8-20110106