000188889 001__ 188889 000188889 005__ 20210129215256.0 000188889 0247_ $$2Handle$$a2128/9159 000188889 037__ $$aFZJ-2015-02187 000188889 041__ $$aEnglish 000188889 1001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b0$$eCorresponding Author$$ufzj 000188889 1112_ $$aPLANT 2030 Status Seminar 2015$$cPotsdam$$d2015-03-04 - 2015-03-06$$wGermany 000188889 245__ $$aNoninvasive 3D Root Imaging 000188889 260__ $$c2015 000188889 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1427288141_11760 000188889 3367_ $$033$$2EndNote$$aConference Paper 000188889 3367_ $$2DataCite$$aOutput Types/Conference Poster 000188889 3367_ $$2DRIVER$$aconferenceObject 000188889 3367_ $$2ORCID$$aCONFERENCE_POSTER 000188889 3367_ $$2BibTeX$$aINPROCEEDINGS 000188889 520__ $$aThe influence of roots on plant productivity has often been neglected because of the difficulties to access and monitor the root system architecture and function. The goals of this work are to establish methods to noninvasively image 3D root system architecture (RSA) in 3D, to identify structural and functional root traits, to monitor the development of plant root traits during development and, in particular, to identify traits of resource efficient roots. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) are two modalities which enable observing structural and functional properties of roots growing in soil in a noninvasive manner. The existing 4.7T MRI System has been shown to produce 3D images with a high root to soil contrast [1]. Due to the installed prototypic robot system these data sets can be acquired automatically, including measurements during the night and on weekends, leading to a considerable amount of raw data. To enable calculation of RSA traits and their development over time, a software tool has been developed capable of extracting the RSA from the MRI measurement data automatically. Methods to manually correct the automatically extracted RSA have been implemented. Typical root traits calculated from the extracted RSA are shown, including a comparison to an invasive method (WinRhizo).Functional information, in particular of carbon transport, of intact root systems can be obtained by positron emission tomography (PET). Radioactively labelled [11C]-CO2 is taken up by photosynthesis and radiolabelled metabolites (tracer) are eventually transported into the root system. The existing PET system (PlanTIS [1]) is used for test experiments though its detection sensitivity is too low to characterize transport properties. To overcome the drawbacks of PlanTIS, a new PET system (phenoPET) has been developed together with Philips Photon Counting and two institutes at Forschungszentrum Jülich (ZEA-1 and ZEA-2). The phenoPET is currently being assembled and will be delivered in 2015. Compared to PlanTIS, the new phenoPET system will provide higher sensitivity and a larger field of view, two important factors to enable functional phenotyping.Literature:[1] Jahnke et al.: Combined MRI–PET dissects dynamic changes in plant structures and functions. The Plant Journal (2009) 59, 634–644 000188889 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0 000188889 536__ $$0G:(DE-Juel1)BMBF-031A053A$$aDPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)$$cBMBF-031A053A$$fDeutsches Pflanzen Phänotypisierungsnetzwerk$$x1 000188889 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b1$$ufzj 000188889 7001_ $$0P:(DE-Juel1)129346$$aKochs, Johannes$$b2$$ufzj 000188889 7001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b3$$ufzj 000188889 7001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b4$$ufzj 000188889 7001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes Auke$$b5$$ufzj 000188889 7001_ $$0P:(DE-Juel1)5963$$aBühler, Jonas$$b6$$ufzj 000188889 7001_ $$0P:(DE-Juel1)129303$$aChlubek, Antonia$$b7$$ufzj 000188889 7001_ $$0P:(DE-Juel1)129336$$aJahnke, Siegfried$$b8$$ufzj 000188889 773__ $$y2015 000188889 8564_ $$uhttps://juser.fz-juelich.de/record/188889/files/03_Poster_Pflugfelder_DPPN2015_final.pdf$$yOpenAccess 000188889 8564_ $$uhttps://juser.fz-juelich.de/record/188889/files/03_Poster_Pflugfelder_DPPN2015_final.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000188889 909CO $$ooai:juser.fz-juelich.de:188889$$pdriver$$pVDB$$popen_access$$popenaire 000188889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000188889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000188889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129346$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000188889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000188889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000188889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000188889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5963$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000188889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129303$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000188889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129336$$aForschungszentrum Jülich GmbH$$b8$$kFZJ 000188889 9130_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF2-89580$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000188889 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000188889 9141_ $$y2015 000188889 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000188889 920__ $$lyes 000188889 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 000188889 980__ $$aposter 000188889 980__ $$aVDB 000188889 980__ $$aUNRESTRICTED 000188889 980__ $$aI:(DE-Juel1)IBG-2-20101118 000188889 9801_ $$aFullTexts