001     188889
005     20210129215256.0
024 7 _ |a 2128/9159
|2 Handle
037 _ _ |a FZJ-2015-02187
041 _ _ |a English
100 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a PLANT 2030 Status Seminar 2015
|c Potsdam
|d 2015-03-04 - 2015-03-06
|w Germany
245 _ _ |a Noninvasive 3D Root Imaging
260 _ _ |c 2015
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1427288141_11760
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The influence of roots on plant productivity has often been neglected because of the difficulties to access and monitor the root system architecture and function. The goals of this work are to establish methods to noninvasively image 3D root system architecture (RSA) in 3D, to identify structural and functional root traits, to monitor the development of plant root traits during development and, in particular, to identify traits of resource efficient roots. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) are two modalities which enable observing structural and functional properties of roots growing in soil in a noninvasive manner. The existing 4.7T MRI System has been shown to produce 3D images with a high root to soil contrast [1]. Due to the installed prototypic robot system these data sets can be acquired automatically, including measurements during the night and on weekends, leading to a considerable amount of raw data. To enable calculation of RSA traits and their development over time, a software tool has been developed capable of extracting the RSA from the MRI measurement data automatically. Methods to manually correct the automatically extracted RSA have been implemented. Typical root traits calculated from the extracted RSA are shown, including a comparison to an invasive method (WinRhizo).Functional information, in particular of carbon transport, of intact root systems can be obtained by positron emission tomography (PET). Radioactively labelled [11C]-CO2 is taken up by photosynthesis and radiolabelled metabolites (tracer) are eventually transported into the root system. The existing PET system (PlanTIS [1]) is used for test experiments though its detection sensitivity is too low to characterize transport properties. To overcome the drawbacks of PlanTIS, a new PET system (phenoPET) has been developed together with Philips Photon Counting and two institutes at Forschungszentrum Jülich (ZEA-1 and ZEA-2). The phenoPET is currently being assembled and will be delivered in 2015. Compared to PlanTIS, the new phenoPET system will provide higher sensitivity and a larger field of view, two important factors to enable functional phenotyping.Literature:[1] Jahnke et al.: Combined MRI–PET dissects dynamic changes in plant structures and functions. The Plant Journal (2009) 59, 634–644
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)
|0 G:(DE-Juel1)BMBF-031A053A
|c BMBF-031A053A
|f Deutsches Pflanzen Phänotypisierungsnetzwerk
|x 1
700 1 _ |a van Dusschoten, Dagmar
|0 P:(DE-Juel1)129425
|b 1
|u fzj
700 1 _ |a Kochs, Johannes
|0 P:(DE-Juel1)129346
|b 2
|u fzj
700 1 _ |a Metzner, Ralf
|0 P:(DE-Juel1)129360
|b 3
|u fzj
700 1 _ |a Koller, Robert
|0 P:(DE-Juel1)165733
|b 4
|u fzj
700 1 _ |a Postma, Johannes Auke
|0 P:(DE-Juel1)144879
|b 5
|u fzj
700 1 _ |a Bühler, Jonas
|0 P:(DE-Juel1)5963
|b 6
|u fzj
700 1 _ |a Chlubek, Antonia
|0 P:(DE-Juel1)129303
|b 7
|u fzj
700 1 _ |a Jahnke, Siegfried
|0 P:(DE-Juel1)129336
|b 8
|u fzj
773 _ _ |y 2015
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/188889/files/03_Poster_Pflugfelder_DPPN2015_final.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/188889/files/03_Poster_Pflugfelder_DPPN2015_final.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:188889
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129425
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129346
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129360
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165733
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144879
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)5963
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129303
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129336
913 0 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF2-89580
|0 G:(DE-HGF)POF2-89582
|2 G:(DE-HGF)POF3-890
|v Plant Science
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21