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Bulk viscosity of multiparticle collision dynamics fluids
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We determine the viscosity parameters of the multiparticle collision dynamics (MPC) approach, a particle-based

mesoscale hydrodynamic simulation method for fluids. We perform analytical calculations and verify our results

by simulations. The stochastic rotation dynamics and the Andersen thermostat variant of MPC are considered,

both with and without angular momentum conservation. As an important result, we find a nonzero bulk viscosity

for every MPC version. The explicit calculation shows that the bulk viscosity is determined solely by the

collisional interactions of MPC.
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I. INTRODUCTION

During the past few decades, various mesoscale hydrody-

namic simulation techniques have been developed and have

been applied to study soft matter systems. Prominent examples

are the lattice-Boltzmann (LB) technique [1–3], dissipative

particle dynamics (DPD) [4,5], and multiparticle collision

dynamics (MPC) [6–9]. Common to these approaches is a

simplified, coarse-grained description of the fluid degrees of

freedom while maintaining the essential microscopic physics

on the length scales of interest. As a consequence, this leads

to particular equations of state, in the simplest case that of an

ideal gas, as is true for LB and MPC. The question is then

to what extent other quantities, e.g., transport coefficients,

are similar to those of an ideal gas. Here, of particular

interest is the bulk viscosity, which is considered to be zero

for monatomic gases [10–12]. However, calculations yield a

nonzero bulk viscosity for LB [3]. As far as MPC is concerned,

zero [11,13,14] and nonzero [11,15] bulk viscosity values have

been reported.

Multiparticle collision dynamics is a particle-based hy-

drodynamic simulation method, which incorporates ther-

mal fluctuations, provides hydrodynamic correlations, and

is easily coupled with other simulation techniques, such

as molecular-dynamics simulations for embedded parti-

cles [8,9]. MPC proceeds in a ballistic streaming step and

a collision step. Collisions occur at fixed discrete time

intervals and establish a local stochastic interaction be-

tween particles. Thereby, the particles are sorted into cells

to define the multiparticle-collision environment. Various

schemes for the collisional interaction have been proposed

[6–9,16,17]. The original method, which employs rotation

of relative velocities, is often denoted as stochastic-rotation

dynamics (SRD) [6–9,16,17]. Other methods, adopting an

Andersen-thermostat-like idea, denoted as MPC-AT, use

Gaussian-distributed random numbers for the relative veloc-

ities [16,17]. In the simplest version, angular momentum is

not conserved in a collision. However, angular-momentum-

conserving extensions have been introduced for both the

stochastic rotation version of MPC (MPC-SRD+a) and the
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Andersen variant (MPC-AT+a) [17,18]. The MPC method

has successfully been applied to a broad range of soft

matter systems ranging from equilibrium colloid [6,8,9,19–27]

and polymer [8,9,28–30] solutions and, more importantly,

nonequilibrium systems such as colloids [16,31–35], poly-

mers [29,36–45], vesicles [46], and cells [47,48] in flow

fields, colloids in viscoelastic fluids [49–51], to self-

propelled spheres [52–54], rods [8,55], and other microswim-

mers [18,56–59]. Moreover, extensions have been proposed for

fluids with nonideal equations of state [60] and mixtures [61].

The hydrodynamic properties of the MPC fluid manifest

themselves in the stress tensor, which, for an isotropic system,

has three viscosity parameters in general [62]. For MPC, the

shear viscosity has been analyzed theoretically and numeri-

cally [7–9,11,15,63–66], and good agreement has been found

between the theoretical expression and the numerically ob-

tained values for a three-dimensional nonangular-momentum-

conserving SRD fluid (MPC-SRD−a) [67]. However, little

is known about the bulk viscosity, although the simulations

of Ref. [14] suggest a zero bulk viscosity for two-dimensional

MPC fluids. Yet a recent study of circular Couette flow between

a slip and a no-slip cylinder suggests a nonzero bulk viscosity

for a MPC-SRD−a fluid [68].

In this article, we determine all relevant viscosity pa-

rameters of MPC fluids, and we demonstrate that the bulk

viscosity is finite for both angular-momentum-conserving and

nonangular-momentum-conserving MPC variants. Moreover,

we derive an analytical expression for the bulk viscosity and

confirm it by simulations.

The outline of the paper is as follows. In Sec. II, we

introduce the MPC simulation method. The form of the stress

tensor is discussed in Sec. III, and the viscosity parameters

are determined analytically in Sec. IV. Simulation results are

presented in Sec. V. Finally, Sec. VI summarizes our findings.

II. MULTIPARTICLE COLLISION DYNAMICS

A. Algorithm

The MPC fluid consists of N point particles with mass

m, continuous positions r i , and velocities vi , which undergo

streaming and subsequent collision steps. In the streaming

step, the particles move ballistically during the time interval

h, denoted as collision time, and their positions are updated
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according to

r i(t + h) = r i(t) + hvi(t). (1)

In the collision step, the rectangular cuboid fluid volume V of

dimensions Lx × Ly × Lz is divided into cubic cells of length

a to define the multiparticle collision environment. Particles

sharing a cell exchange momenta in a stochastic process,

whereby the total linear momentum is conserved. The velocity

vi(t + h) of particle i after collision is given by

vi(t + h) = vc.m.(t) + C[vic(t)]. (2)

Here, vc.m. = (1/Nc)
∑Nc

i=1 vi is the center-of-mass velocity,

vic = vi − vc.m. is the particle’s relative velocity with respect

to the center-of-mass velocity, Nc is the total number of

particles in the cell, and C is the collision operator.

For MPC-SRD−a, the operator C is a rotation around a

randomly oriented axis by the constant angle α, i.e.,

C[vic] = R(α)vic. (3)

The orientation of the rotation axis is chosen independently

for every collision cell and at every step [6,8,9].

In MPC-AT−a, a velocity v
ran
i is chosen for each particle i

with Gaussian-distributed Cartesian components of zero mean

and variance kBT/m [16], where kB is Boltzmann’s constant

and T is the temperature. The collision operator is then defined

as

C[vic] = v
ran
i −

1

Nc

Nc
∑

j=1

v
ran
j . (4)

MPC-SRD and MPC-AT correspond to a microcanonical and

a canonical ensemble, respectively. By means of a cell-level

canonical thermostat [29], a canonical ensemble is obtained

for MPC-SRD, if desired. Throughout this paper, we will

exclusively work within the canonical ensemble, i.e., we

will apply the Maxwell-Boltzmann scaling approach (MBS),

described in Ref. [29], to control temperature on a collision-

cell level.

To conserve angular momentum, in each cell a rigid body

rotation of the fluid-particle velocities is performed, which

yields the particle velocities after a collision [17],

vi(t + h) = vc.m.(t) + C[vic(t)] + ω × r ic(t + h), (5)

where the angular velocity ω is

ω = mI−1

Nc
∑

j=1

(rjc(t + h) × {vjc(t) − C[vjc(t)]}). (6)

Here, I is the moment-of-inertia tensor of the respective

particles in the center-of-mass reference frame at time t + h,

rc.m. = (1/Nc)
∑Nc

i=1 r i is the center-of-mass position, and

r ic = r i − rc.m.. Equation (5) can only be applied to MPC-

SRD if a thermostat is used, since energy conservation is

violated by the rotation.

Partition of the system into collision cells leads to a viola-

tion of Galilean invariance. To reestablish Galilean invariance,

a random shift of the collision-cell lattice is introduced at every

collision step [63,69]. For practical reasons, we equivalently

shift the particle positions during their sorting into collision

cells, i.e., the positions for particle sorting are given by r i + s,

where the Cartesian components sα (α ∈ {x,y,z}) of the shift

vector s are taken from a uniform distribution in the interval

[−a/2,a/2]. Note that the shifted particle positions have to

satisfy the boundary conditions.

We apply three-dimensional periodic boundary conditions

for all simulations. Shear flow is implemented by Lees-

Edwards boundary conditions [70].

B. Stress tensor

A virial expression for the stress tensor σαβ , σαβ measures

the internal forces per area in the α direction acting on a surface

with normal vector in the β direction, for a MPC fluid has been

derived in Ref. [66],

σ i
αβ = −

1

V

N
∑

i=1

m[viα − vα(ri )][viβ − vβ(ri )]

−
1

V h

N
∑

i=1

�piα�riβ . (7)

Here, r i is the position of particle i in the primary box,

i.e., the minimum image convention is applied [70], vα(ri )

is the mean velocity field at r = r i [66,71], � pi is the

change of momentum of particle i due to the collision,

and �r i = r i − rc is the position of particle i relative to

the center of its cell rc. Originally, riβ instead of �riβ

appears in the second term of the stress tensor (7) [66],

but riβ and �riβ only differ by the constant vector rc and
∑

i∈cell �piαrcβ = 0, since the total momentum change in a cell

is zero. We denote the first and second term as the kinetic and

collisional stress tensor, respectively, i.e., σαβ = σ k
αβ + σ c

αβ .

At equilibrium, the average of the collisional stress tensor

vanishes, because the momentum exchange and the particle

position are independent. In the case of an applied shear flow

along the x axis, the mean velocity field vα(ri ) is given by

vx = γ̇ rz, vy = vz = 0, (8)

where γ̇ is the shear rate.

In the steady state, we can perform a time average as

discussed in Ref. [66], which yields

σxz =
〈

σ i
xz

〉

= −

〈

1

V

N
∑

i=1

mvixviz +
γ̇ h

2V

N
∑

i=1

mv2
iz

+
1

V h

N
∑

i=1

�pix�riz

〉

T

, (9)

where 〈· · · 〉T denotes the average over time steps [66]. The

velocities vi are taken before collision and in the primary box

of the periodic system.

III. HYDRODYNAMICS

A. Continuum stress and Navier-Stokes equations

On large length and time scales, a MPC fluid is well

described in terms of a continuous velocity field v(r,t)

by the Navier-Stokes equations [6,8,11,15,18,72], which, in
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linearized form, read

∂

∂t
δρ(r,t) + ρ0∇ · v(r,t) = 0, (10)

ρ0

∂

∂t
v(r,t) = ∇ · σ (r,t) (11)

for an isothermal system, where ρ = ρ0 + δρ is the fluid mass

density with its average ρ0 and fluctuations δρ. The stress

tensor σ can be expressed as

σαβ = −pδαβ +
∑

α′β ′

ηαβα′β ′∂β ′vα′

= −pδαβ + η1∂αvβ + η2∂βvα + η3δαβ

∑

γ

∂γ vγ , (12)

with the thermodynamic pressure p, the abbreviation ∂αvβ =
∂vβ/∂rα , and α,β,α′,β ′,γ ∈ {x,y,z}. Here, we assume a linear

dependence of the viscous stress on the velocity gradient [73]

and subsequently apply the most general form of an isotropic

tensor ηαβα′β ′ [18,30,62]. The viscosity parameters η1, η2, and

η3 depend on the particular MPC scheme; we will provide the

respective expressions in Sec. IV.

With the stress tensor (12), the Navier-Stokes equation (11)

becomes

ρ0

∂

∂t
v = −∇p + η2�v + (η1 + η3)∇(∇ · v). (13)

Note that in the Navier-Stokes equation, only two viscosity

parameters appear. However, the equation has to be supple-

mented by boundary conditions, which in the case of slip or

partial slip boundaries include the stress tensor itself [68].

Thus, three viscosity parameters are relevant in general. We

can identify η2 as shear viscosity η, i.e., we set η ≡ η2, since it

appears in front of �v. The bulk viscosity ηV is the transport

coefficient associated with the dynamic pressure [74]

P = −
1

3

∑

α

σαα = p − ηV
∇ · v. (14)

By means of Eq. (12), we find

ηV = (η1 + η2 + 3η3)/3. (15)

B. Hydrodynamic correlations

Thermal fluctuations can be included in the Navier-Stokes

equations by adding a Gaussian and Markovian stochastic

process σ
R to the stress tensor σ (Landau-Lifshitz Navier-

Stokes approach) [18,72,73], with

〈σR〉 = 0, (16)

〈

σR
αβ(r,t)σR

α′β ′ (r ′,t ′)
〉

= 2kBT ηαβα′β ′δ(r − r ′)δ(t − t ′). (17)

We briefly summarize the theoretical results for velocity

autocorrelation functions of an isothermal system, which we

will compare to simulations in Sec. V. We refer to Ref. [72]

for the derivation of the respective expressions.

First of all, we introduce the Fourier representation of the

velocity field for a periodic system via

v(r,t) =
∑

k

v(k,t)e−ik·r , (18)

with kα = nα2π/Lα,nα ∈ Z,k �= 0. v(k,t) can be split into a

longitudinal velocity v
L(k,t) = kkT

v(k,t)/k2 and a transver-

sal velocity v
T (k,t) = (1 − kkT /k2)v(k,t). The time depen-

dence of the transversal velocity autocorrelation function

(TVACF) is determined by the shear viscosity according to

〈vT (k,t) · v
T (−k,0)〉 =

2kBT

ρ0V
e−νk2|t |, (19)

where ν = η/ρ0 is the kinematic viscosity. Sound propagation

is determined by the longitudinal velocity autocorrelation

function (LVACF), which reads [72]

CL(k,t)

= 〈vL(k,t)vL(−k,0)〉

=
kBT

ρ0V
e−ν̃k2|t |/2



cos(
|t |) +

√

k2ν̃2

4c2 − k2ν̃2
sin(
|t |)





(20)

for 4c2 > k2ν̃. The expression for 4c2 < k2ν̃ can be found in

Ref. [72]. Here, c =
√

kBT/m is the isothermal sound velocity,


 = k2ν̃
√

4c2/(k2ν̃2) − 1/2, and ν̃ = η̃/ρ0, where

η̃ = (η1 + η2 + η3) (21)

is the viscous contribution to the sound attenuation.

IV. ANALYTICAL CALCULATION OF VISCOSITY

PARAMETERS FOR MPC

Since the stress tensor (7) is comprised of the kinetic and

collisional parts σ k
αβ and σ c

αβ , with a respective continuum

representation, we can split the viscosities into kinetic parts

ηk
1, ηk

2, and ηk
3, and respective collisional parts ηc

1, ηc
2, and ηc

3.

A. Relations between η1 and η2

Evidently, the kinetic stress tensor is symmetric, and

therefore ηk
1 = ηk

2. For the collisional stress, the symmetry

requirement σ c
αβ = σ c

βα is equivalent to

0 =
∑

αβ

εγαβσ
i,c
αβ =

∑

i∈cell

(� pi × r i)γ = −
∑

i∈cell

�Liγ , (22)

where εαβγ is the Levi-Civita tensor. Hence, the collisional

stress tensor is only symmetric, i.e., ηc
1 = ηc

2, if the angular

momentum L is conserved during collisions.

To determine ηc
1 for MPC−a, we consider a fluid in the shear

field Eq. (8) for which the stress σαβ can be easily computed

by Eq. (12). The only nonzero off-diagonal elements are

σxz = η2γ̇ , σzx = η1γ̇ . (23)

Exploiting the stress tensor (9), we can establish a relation

between the stress, shear rate, and the MPC parameters. For

the collisional stress, we find

〈

σ
i,c
αβ

〉

=
−m

V h

∑

i

〈�viα�riβ〉 =
−m

V h

∑

i

〈C − 1〉〈vicα�riβ〉

=
m

V h
〈1 − C〉

(

1 −
1

Nc

)

∑

i

〈viα�riβ〉 (24)
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within the molecular chaos assumption, i.e., we set

〈vjα�riβ〉 = 0 for j �= i. Since 〈viz�rix〉 = 0 for MPC−a,

we directly find σ c
zx = 0 and hence ηc

1 = 0 [22]. On the other

hand, 〈vix�riz〉 = γ̇ 〈�r2
iz〉 = γ̇ a2/12 > 0, which enables us

to calculate ηc
2 [66]. The result is equal to that obtained by

Green-Kubo relations, which are exploited in Sec. IV B. In

summary, we found

ηk
1 = ηk

2, (25)

ηc
1 =

{

ηc
2 for MPC + a,

0 for MPC − a.
(26)

B. Green-Kubo relation for shear viscosity

We will focus on MPC−a. Analytical results for the shear

viscosity of MPC+a can be found in Ref. [65]. The shear

viscosity η ≡ η2 is obtained by the Green-Kubo relation [74]

η =
V

kBT

∫ ∞

0

dt〈σxz(t)σxz(0)〉 (27)

from the stress tensor correlation function. The correlation

function 〈σxz(t)σxz(0)〉 comprises autocorrelation functions

of the kinetic and collisional stress tensors, respectively, as

well as cross terms 〈σ k
xzσ

c
xz〉. By simulations, we determine

the cross correlations for a wide range of MPC parameters

and find 〈σ i,k
xz σ i,c

xz 〉 = 0 for the particle-level stress tensor of

Eq. (7). So far, we have not been able to prove this relation

analytically, but we will assume that it holds in the following.

As a consequence, the viscosity is simply the sum of a kinetic

and collisional contribution. For the kinetic viscosity, we find

within the molecular chaos approximation [17,63,64,66,75]

ηk
2 =

V

kBT

(

h

2

〈

σ i,k
xz (0)2

〉

+ h

∞
∑

l=1

〈

σ i,k
xz (lh)σ i,k

xz (0)
〉

)

=
V h

kBT

〈

σ i,k
xz (0)2

〉

(

1

2
+

∞
∑

l=1

f l

)

=
NkBT

V
h

(

1

1 − f
−

1

2

)

, (28)

where we used 〈vix(t + h)viz(t + h)〉C = f 〈vix(t)viz(t)〉C , and

〈· · · 〉C denotes the average over the collision operator, which

we perform before the ensemble average. The factor f

reads [17,63,64,66,75]

f =
1

Nc

+
(

1 −
1

Nc

)

1

5
[1 + 2 cos(α) + 2 cos(2α)] (29)

for SRD−a and f = 1/Nc for AT−a [17]. Here, and in the

following, we do not account for particle number fluctuations

in a cell, since their contribution to the viscosity coefficients

are negligible for Nc > 5.

Similarly, the collisional viscosity of MPC−a follows

as [66]

ηc
2 =

V

kBT

h

2

〈

σ i,c
xz (0)σ i,c

xz (0)
〉

=
1

2kBT V h

∑

i,j

〈�pix�pjx〉〈�riz�rjz〉 =
Nma2

12V h
g (30)

by assuming that in MPC−a the momentum change � pi

is independent of the position �r i , and by utilizing

〈�r2
iz〉 = a2/12. Note that we neglect all higher correla-

tions 〈σ i,c
xz (lh)σ i,c

xz (0)〉 for l = 1,2,3, . . . , which is moti-

vated by simulation results. Furthermore, we defined g =
m

∑

i,α〈�viα�viα〉/(6NkBT ), which becomes

g =
2

3

(

1 −
1

Nc

)

(1 − cos α) (31)

for SRD−a and g = 1 − 1/Nc for AT−a [17]. In Ref. [75],

the same result for the viscosity was derived by calculating the

momentum transfer across a plane in shear flow.

A calculation of the collisional viscosity by means of a

Green-Kubo relation was also performed in Ref. [69] with a

stress tensor defined on the cell rather than the particle level.

In that case, the correlations 〈σ c
xz(lh)σ c

xz(0)〉 and 〈σ k
xzσ

c
xz〉 are

in fact not negligible [69].

C. Green-Kubo relation for bulk viscosity

In terms of the dynamic pressure P and its fluctuations δP

defined as

P = −
1

3

∑

α

σαα, (32)

δP = P − 〈P 〉 −
2

3V
(Ekin − 〈Ekin〉), (33)

the bulk viscosity follows from the Green-Kubo relation [74]

ηV =
V

kBT

∫ ∞

0

dt〈δP (t)δP (0)〉. (34)

Note that by definition δP is independent of the kinetic stress,

which therefore does not contribute to ηV . Furthermore, the

dynamic pressure P is not affected by the presence or absence

of angular momentum conservation, i.e., by the term ω × r ic

in the collision rule of MPC+a (5). This evidently follows

from the calculation

Nc
∑

i=1

r i · [ω × (r i − rc.m.)] = −
Nc
∑

i=1

r i · (ω × rc.m.)

= −Ncrc.m. · (ω × rc.m.) = 0. (35)

Hence, the bulk viscosity is identical for MPC+a and MPC−a,

which constitutes an important result of the article. In analogy

with the derivation of Eq. (30) and within the molecular chaos

assumption, we find for MPC−a

ηV =
V

kBT

h

2
〈δP (0)δP (0)〉

=
1

18kBT V h

∑

iαβ

〈�piα�piβ〉〈�riα�riβ〉

=
1

18kBT V h

m2a2

12

∑

iα

〈�viα�viα〉 =
1

3
ηc

2. (36)
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TABLE I. Viscosity relations for MPC±a variants. η = η2 is the

shear viscosity and ηV = (η1 + η2 + 3η3)/3 is the bulk viscosity.

η1 + η2 + η3 is the viscous contribution to the sound attenuation

coefficient. Note that the viscosities ηk and ηc are different for

MPC−a and MPC+a [17]. However, in any case, the bulk viscosity is

given by ηV = ηc/3, where ηc is the collisional viscosity of MPC−a.

σαβ = −pδαβ + η1∂αvβ + η2∂βvα + η3δαβ

∑

γ ∂γ vγ

η1 η2 η3

MPC−a ηk η = ηk + ηc −2ηk/3

MPC+a η = ηk + ηc η −2η/3 + ηV

D. Resulting stress tensor for MPC fluid

1. MPC−a

For MPC−a we established the relations ηk
1 = ηk

2 ≡ ηk ,

ηc
1 = 0, 0 < ηc

2 ≡ ηc, and ηV = ηc/3. Using Eqs. (15) and (12),

this leads to the stress tensor

σαβ = −pδαβ + ηk

(

∂αvβ + ∂βvα −
2

3
δαβ

∑

γ

∂γ vγ

)

+ ηc∂βvα. (37)

Analytical expressions for ηk and ηc are provided in Eqs. (28)

and (30). We like to emphasize that Eq. (37) agrees with the

stress tensor derived in Refs. [15,76].

2. MPC+a

For MPC+a we found η1 = η2 ≡ η, and the stress tensor

reads

σαβ = −pδαβ + η

(

∂αvβ + ∂βvα −
2

3
δαβ

∑

γ

∂γ vγ

)

+ ηV δαβ

∑

γ

∂γ vγ . (38)

Here, the bulk viscosity is ηV = ηc/3, where ηc is the

collisional viscosity of MPC−a. Note that, in general, the

viscosities ηk and ηc are different for MPC−a and MPC+a.

Table I summarizes our findings in terms of the parameters

η1,η2, and η3.

V. SIMULATIONS

A. Viscosities η1 and η2

To determine η1 and η2, we perform shear simulations using

Lees-Edwards boundary conditions [70]. The viscosities fol-

low from Eq. (23), with the stress tensor calculated according

to Eq. (9). Our simulation results confirm Eqs. (25) and (26) for

both SRD±a and AT±a. Moreover, the simulations validate

the analytical formula for ηc for AT−a and SRD−a. As

in previous simulation studies, we find that the analytical

formulas for ηk of MPC−a become increasingly imprecise

for smaller time steps due to the applied molecular chaos

assumption in their derivation. However, the total shear

viscosity agrees very well with the theoretical expression,

even at small collision times, because the collisional viscosity

dominates at small h [67].

FIG. 1. Shear viscosity η for a SRD+a fluid. The open symbols

denote simulation results for the MPC parameters 〈Nc〉 = 10, α =
130◦, the shear rate γ̇ = 0.01

√

kBT/(ma2), and the size of the cubic

simulation box L = 40a. The solid line represents the theoretical

result provided in Ref. [65]. The measured values are also listed in

Table II.

The analytical expressions for the shear viscosity of SRD+a

and AT+a given in Ref. [65] are found to be less accurate than

those for the nonangular-momentum-conserving variants, as

indicated in Fig. 1 and Table II.

B. Bulk viscosity

We measure the bulk viscosity by means of the Green-Kubo

relation (34) performing equilibrium simulations. The integral

is evaluated using the trapezoidal rule to account for the

discrete time process. The correlation function 〈δP (t)δP (0)〉
decays extremely rapidly. Already after one collision step,

the correlation function is essentially zero. Hence, ηV is well

described by Eq. (36), with the essential contribution at zero

time lag. The measured bulk viscosities are presented in Fig. 2.

They agree very well with the analytical prediction.

We also determined the bulk viscosity for two-dimensional

MPC fluids and found ηV = ηc/2, in agreement with theoreti-

cal calculations similar to those of Sec. IV. Hence, in general,

the bulk viscosity is ηV = ηc/d, where d denotes the spatial

dimension.

C. Viscous contribution to sound attenuation

To calculate the longitudinal velocity correlation func-

tion (20), we perform the Fourier transformation

v(k,t) =
1

N

N
∑

i=1

vi(t)e
ik·r i (t) (39)

of the MPC particle velocities.

TABLE II. Measured and respective theoretical (Ref. [17]) shear

viscosities of MPC+a variants.

h/
√

ma2/(kBT ) 0.01 0.03 0.1 0.3 1

SRD+a η/
√

mkBT/a4 35.2 11.9 4.26 2.94 5.75

analytical 39.3 13.2 4.44 2.87 5.59

AT+a η
√

mkBT/a4 32.0 10.9 4.09 3.21 6.92

analytical 35.9 12.1 4.23 3.12 6.79
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FIG. 2. (Color online) Bulk viscosities of MPC±a variants for

various collision steps h. Circles (red) and diamonds (blue) corre-

spond to SRD−a and SRD+a fluids, respectively, while the squares

(green) and triangles (magenta) correspond to AT−a and AT+a

fluids. The simulation parameters are 〈Nc〉 = 10, α = 130◦, and

L = 10a for SRD, and 〈Nc〉 = 5 for AT. The black lines represent

the theoretical expectation ηV = ηc/3, where ηc is the collisional

viscosity of MPC−a [Eq. (30)]. The top solid and bottom dashed line

correspond to SRD and AT, respectively.

The decay of the correlation function (20) is governed

by the viscosity η̃ = η1 + η2 + η3 = 2
3
(η1 + η2) + ηV . For

the non-angular-momentum-conserving variants of MPC, the

expression reduces to η̃ = 4ηk/3 + ηc, as already discussed in

Refs. [11,14,72], which includes the bulk viscosity.

More importantly, the bulk viscosity also contributes to

sound attenuation in an angular-momentum-conserving MPC

fluid. The effect of ηV is clearly visible for both SRD+a and

AT+a in Fig. 3. Since ηc ∼ h−1 and ηk ∼ h, the bulk viscosity

contributes significantly to the decay of the longitudinal

correlation function at small collision time steps.

FIG. 3. (Color online) Longitudinal velocity autocorrelation

function for k = 2π/L and the length L = 40a of a cubic box. The

red and blue lines correspond to SRD+a with 〈Nc〉 = 10, α = 130◦,

and h/
√

ma2/(kBT ) = 0.01; the green and black lines correspond

to AT+a with 〈Nc〉 = 10 and h/
√

ma2/(kBT ) = 0.05. Dashed lines

represent simulation results. The solid lines represent the theoretical

expression Eq. (20) with ν̃ = (4η/3 + ηV )/ρ0, while for the dotted

lines the viscosity ν̃ = (4η/3)/ρ0 without bulk contribution is used.

We calculated the LVACF for several collision step sizes

and found good agreement with the theoretical prediction as

long as the time step h is small, i.e., h/
√

ma2/(kBT ) � 0.1.

As discussed in Refs. [67,72], larger time steps result in a

substantial heat transfer between cells in the streaming step,

and consequently the isothermal theory is no longer applicable.

VI. SUMMARY AND CONCLUSIONS

We have determined the viscous transport coefficients for

SRD and AT variants of MPC fluids by both analytical

considerations and simulations. As a main result, we find a

nonzero bulk viscosity for all MPC variants, with and without

angular momentum conservation.

A nonzero bulk viscosity for MPC-SRD−a has already

been indicated in Ref. [11] in connection with the stress tensor

of Ref. [15]. An alternative stress tensor has been formulated,

which differs only by a term of vanishing divergence from

Eq. (37), and thus it yields the identical Navier-Stokes equa-

tions [11,14,72]. However, in Ref. [14], it has been concluded

that the bulk viscosity for this stress tensor is zero. The lack

of angular momentum conservation leaves more viscosity

parameters undetermined than in an angular-momentum-

conserving fluid. Hence, by considering the shear viscosity and

the sound attenuation factor only, the lack or presence of a bulk

viscosity cannot be verified, which renders the various stress

tensors seemingly equivalent. However, the Navier-Stokes

equations have to be supplemented by boundary conditions,

which can depend explicitly on the stress tensor, as is the case

with (partial) slip boundary conditions. As a consequence, all

three viscosity parameters determine the velocity field, and

only the stress tensor Eq. (37) is appropriate for MPC−a

fluids [68].

The situation is different for angular-momentum-

conserving fluids, where the symmetry requirement of the

stress tensor reduces the number of independent viscosity

parameters to two. Hence, the shear viscosity and the sound

attenuation factor determine ηV uniquely. On the contrary, the

bulk viscosity is an integral part of the sound attenuation factor

η̃. Specifically for MPC at small collision time steps, where

the collisional viscosity ηc dominates the shear viscosity and

η ≈ ηc, the bulk viscosity is essential for the correct sound

attenuation factor. We confirmed the strong influence of the

bulk viscosity on the decay of the sound correlation function

for MPC+a versions by simulations. The presence of ηV has

consequences for all those correlation functions, which include

the longitudinal mode. In particular, the velocity correlation

functions are affected, such as those of colloids.

In addition, our studies confirm that the stress tensor derived

in Ref. [15] is appropriate for MPC−a fluids. This has already

been evident by previous MPC simulation studies for systems

with slip boundary conditions [68].

We found that the shear and bulk viscosity of a MPC fluid

are of the same order of magnitude. For many real fluids, such

as water, the bulk viscosity is hundreds to thousands of times

larger than the shear viscosity [12]. However, the effect of

a large bulk viscosity is most pronounced at high-frequency

hydrodynamics, where compressibility effects matter

most.
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The presence of a nonzero bulk viscosity is seemingly in

contradiction with the ideal gas equation of state of MPC and

the zero bulk viscosity of an ideal gas. As is evident, the

bulk viscosity is determined by collisions only. Hence, for a

weakly interacting MPC fluid, which we may call a gas, ηc is

negligibly small and we may set it to zero. Hence, we reach the

ideal gas limit for large collision time steps. This is supported

by the Schmidt number, which assumes gaslike values for large

collision time steps [77]. Thus, a nonvanishing bulk viscosity

is natural for small collision time steps, because here the MPC

fluid corresponds to a fluid rather than a gas.
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[14] E. Tüzel, T. Ihle, and D. M. Kroll, Phys. Rev. E 74, 056702

(2006).

[15] C. M. Pooley and J. M. Yeomans, J. Phys. Chem. B 109, 6505

(2005).

[16] E. Allahyarov and G. Gompper, Phys. Rev. E 66, 036702 (2002).

[17] H. Noguchi, N. Kikuchi, and G. Gompper, Europhys. Lett. 78,

10005 (2007).

[18] M. Theers and R. G. Winkler, Soft Matter 10, 5894 (2014).

[19] S. H. Lee and R. Kapral, J. Chem. Phys. 121, 11163 (2004).

[20] M. Hecht, J. Harting, T. Ihle, and H. J. Herrmann, Phys. Rev. E

72, 011408 (2005).

[21] J. T. Padding and A. A. Louis, Phys. Rev. E 74, 031402 (2006).

[22] I. O. Götze, H. Noguchi, and G. Gompper, Phys. Rev. E 76,

046705 (2007).

[23] M. K. Petersen, J. B. Lechman, S. J. Plimpton, G. S. Grest, P. J.

in ’t Veld, and P. R. Schunk, J. Chem. Phys. 132, 174106 (2010).

[24] J. K. Whitmer and E. Luijten, J. Phys.: Condens. Matter 22,

104106 (2010).

[25] T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi,
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