000188968 001__ 188968
000188968 005__ 20210129215303.0
000188968 0247_ $$2doi$$a10.1126/science.1257050
000188968 0247_ $$2ISSN$$a0036-8075
000188968 0247_ $$2ISSN$$a1095-9203
000188968 0247_ $$2WOS$$aWOS:000352136400034
000188968 0247_ $$2Handle$$a2128/10212
000188968 0247_ $$2altmetric$$aaltmetric:3841934
000188968 0247_ $$2pmid$$apmid:25814578
000188968 037__ $$aFZJ-2015-02252
000188968 082__ $$a500
000188968 1001_ $$0P:(DE-HGF)0$$aBorsanyi, S.$$b0
000188968 245__ $$aAb initio calculation of the neutron-proton mass difference
000188968 260__ $$aWashington, DC [u.a.]$$bAmerican Association for the Advancement of Science64196$$c2015
000188968 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1427810986_7853
000188968 3367_ $$2DataCite$$aOutput Types/Journal article
000188968 3367_ $$00$$2EndNote$$aJournal Article
000188968 3367_ $$2BibTeX$$aARTICLE
000188968 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000188968 3367_ $$2DRIVER$$aarticle
000188968 500__ $$aPreprint: http://arxiv.org/abs/arXiv:1406.4088
000188968 520__ $$aThe existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300 kilo–electron volts, which is greater than 0 by 5 standard deviations. We also determine the splittings in the Σ, Ξ, D, and Ξcc isospin multiplets, exceeding in some cases the precision of experimental measurements.
000188968 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000188968 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000188968 7001_ $$0P:(DE-Juel1)132580$$aDurr, S.$$b1
000188968 7001_ $$0P:(DE-HGF)0$$aFodor, Z.$$b2$$eCorresponding Author
000188968 7001_ $$0P:(DE-HGF)0$$aHoelbling, C.$$b3
000188968 7001_ $$0P:(DE-HGF)0$$aKatz, S. D.$$b4
000188968 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b5
000188968 7001_ $$0P:(DE-HGF)0$$aLellouch, L.$$b6
000188968 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b7
000188968 7001_ $$0P:(DE-HGF)0$$aPortelli, A.$$b8
000188968 7001_ $$0P:(DE-Juel1)161563$$aSzabo, Kalman$$b9
000188968 7001_ $$0P:(DE-HGF)0$$aToth, B. C.$$b10
000188968 773__ $$0PERI:(DE-600)2066996-3$$a10.1126/science.1257050$$gVol. 347, no. 6229, p. 1452 - 1455$$n6229$$p1452 - 1455$$tScience$$v347$$x1095-9203$$y2015
000188968 8564_ $$uhttp://inspirehep.net/record/1300659
000188968 8564_ $$uhttps://juser.fz-juelich.de/record/188968/files/1406.4088v2.pdf$$yOpenAccess
000188968 8564_ $$uhttps://juser.fz-juelich.de/record/188968/files/1406.4088v2.gif?subformat=icon$$xicon$$yOpenAccess
000188968 8564_ $$uhttps://juser.fz-juelich.de/record/188968/files/1406.4088v2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000188968 8564_ $$uhttps://juser.fz-juelich.de/record/188968/files/1406.4088v2.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000188968 8564_ $$uhttps://juser.fz-juelich.de/record/188968/files/1406.4088v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000188968 909CO $$ooai:juser.fz-juelich.de:188968$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000188968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132580$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000188968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000188968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000188968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161563$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000188968 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000188968 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000188968 9141_ $$y2015
000188968 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000188968 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000188968 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000188968 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000188968 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30
000188968 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000188968 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000188968 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000188968 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000188968 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000188968 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000188968 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000188968 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000188968 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000188968 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000188968 920__ $$lyes
000188968 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000188968 980__ $$ajournal
000188968 980__ $$aVDB
000188968 980__ $$aUNRESTRICTED
000188968 980__ $$aI:(DE-Juel1)JSC-20090406
000188968 9801_ $$aUNRESTRICTED
000188968 9801_ $$aFullTexts