000189021 001__ 189021
000189021 005__ 20221109161711.0
000189021 0247_ $$2Handle$$a2128/8471
000189021 037__ $$aFZJ-2015-02284
000189021 041__ $$aEnglish
000189021 1001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b0$$eCorresponding Author$$ufzj
000189021 1112_ $$aSIAM Conference on Computational Science & Engineering$$cSalt Lake City$$d2015-03-14 - 2015-03-18$$gSIAM CSE 15$$wUSA
000189021 245__ $$aEnabling Large Scale LAPW DFT Calculations by a Scalable Iterative Eigensolver
000189021 260__ $$c2015
000189021 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1428504093_2727$$xInvited
000189021 3367_ $$033$$2EndNote$$aConference Paper
000189021 3367_ $$2DataCite$$aOther
000189021 3367_ $$2ORCID$$aLECTURE_SPEECH
000189021 3367_ $$2DRIVER$$aconferenceObject
000189021 3367_ $$2BibTeX$$aINPROCEEDINGS
000189021 520__ $$aIn LAPW-based methods a sequence of dense generalized eigenvalue problems appears. Traditionally these problems were solved using direct eigensolvers from standard libraries like ScaLAPACK. We developed a subspace iteration method pre-conditioned with Chebyshev polynomials of optimal degree (ChASE). This algorithm is consistently competitive with direct eigensolvers and greatly enhance performance and scalability. ChASE is included in the FLEUR software and improves its scaling behaviour for calculations of large physical systems on modern supercomputers.
000189021 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000189021 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000189021 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b1$$ufzj
000189021 7001_ $$0P:(DE-HGF)0$$aBerljafa, Mario$$b2
000189021 773__ $$y2015
000189021 8564_ $$uhttps://juser.fz-juelich.de/record/189021/files/Presentation%20slides.pdf$$yOpenAccess
000189021 8564_ $$uhttps://juser.fz-juelich.de/record/189021/files/Presentation%20slides.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000189021 8564_ $$uhttps://juser.fz-juelich.de/record/189021/files/Presentation%20slides.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000189021 8564_ $$uhttps://juser.fz-juelich.de/record/189021/files/Presentation%20slides.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000189021 909CO $$ooai:juser.fz-juelich.de:189021$$pdriver$$pVDB$$popen_access$$popenaire
000189021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000189021 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000189021 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000189021 9141_ $$y2015
000189021 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000189021 920__ $$lno
000189021 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000189021 980__ $$aconf
000189021 980__ $$aVDB
000189021 980__ $$aUNRESTRICTED
000189021 980__ $$aFullTexts
000189021 980__ $$aI:(DE-Juel1)JSC-20090406
000189021 9801_ $$aFullTexts