Home > Publications database > Enabling Large Scale LAPW DFT Calculations by a Scalable Iterative Eigensolver > print |
001 | 189021 | ||
005 | 20221109161711.0 | ||
024 | 7 | _ | |a 2128/8471 |2 Handle |
037 | _ | _ | |a FZJ-2015-02284 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Di Napoli, Edoardo |0 P:(DE-Juel1)144723 |b 0 |e Corresponding Author |u fzj |
111 | 2 | _ | |a SIAM Conference on Computational Science & Engineering |g SIAM CSE 15 |c Salt Lake City |d 2015-03-14 - 2015-03-18 |w USA |
245 | _ | _ | |a Enabling Large Scale LAPW DFT Calculations by a Scalable Iterative Eigensolver |
260 | _ | _ | |c 2015 |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1428504093_2727 |2 PUB:(DE-HGF) |x Invited |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
520 | _ | _ | |a In LAPW-based methods a sequence of dense generalized eigenvalue problems appears. Traditionally these problems were solved using direct eigensolvers from standard libraries like ScaLAPACK. We developed a subspace iteration method pre-conditioned with Chebyshev polynomials of optimal degree (ChASE). This algorithm is consistently competitive with direct eigensolvers and greatly enhance performance and scalability. ChASE is included in the FLEUR software and improves its scaling behaviour for calculations of large physical systems on modern supercomputers. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |x 0 |f POF III |
536 | _ | _ | |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM) |0 G:(DE-Juel1)SDLQM |c SDLQM |f Simulation and Data Laboratory Quantum Materials (SDLQM) |x 2 |
700 | 1 | _ | |a Wortmann, Daniel |0 P:(DE-Juel1)131042 |b 1 |u fzj |
700 | 1 | _ | |a Berljafa, Mario |0 P:(DE-HGF)0 |b 2 |
773 | _ | _ | |y 2015 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189021/files/Presentation%20slides.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189021/files/Presentation%20slides.jpg?subformat=icon-144 |x icon-144 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189021/files/Presentation%20slides.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189021/files/Presentation%20slides.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:189021 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)144723 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131042 |
913 | 0 | _ | |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |1 G:(DE-HGF)POF2-410 |0 G:(DE-HGF)POF2-411 |2 G:(DE-HGF)POF2-400 |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a FullTexts |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|